Answer
Verified
429k+ views
Hint: Substitution Method:
In this method from the given two equations of two variables, we have to substitute the equation of any one variable from one of the equations and then substitute it in the other one such that the second equation becomes an equation of one variable and thereby we can solve for that one variable.
So by using any of the above definitions we can solve the given pair of linear equations.
Complete step by step solution:
Given
$
y = 4x - 1.......................\left( i \right) \\
y = 2x - 5.......................\left( {ii} \right) \\
$
Now we are using the substitution method which is one of the algebraic methods, as given above to solve the question.
So by using the above definition, we can say that both (i) and (ii) are equations of $y$ so we can equate
(i) and (ii) to find the value of $x$.
Now equating (i) and (ii), we get:
$
\Rightarrow 4x - 1 = 2x - 5 \\
\Rightarrow 4x - 2x = 1 - 5 \\
\Rightarrow 2x = - 4 \\
\Rightarrow x = - \dfrac{4}{2} \\
\Rightarrow x = - 2..........................\left( {iii} \right) \\
$
Now to get the value of $y$ we have to substitute (iii) in either (i) or (ii).
So on substituting it in (i) we get:
$
\Rightarrow y = 2x - 5 \\
\Rightarrow y = 2\left( { - 2} \right) - 5 \\
\Rightarrow y = - 4 - 5 \\
\Rightarrow y = - 9......................\left( {iv} \right) \\
$
Therefore on solving $y = 4x - 1\;{\text{and}}\;y = 2x - 5$ by substitution method we get $x = - 2\;{\text{and}}\;{\text{y = }} - 9.$
Additional Information:
A given pair of linear equations can be solved either by graphical or algebraic method. The algebraic method is of three types:
1. Substitution Method
2. Elimination Method
3. Cross Multiplication Method
Note:
While solving a pair of linear equations one should take care of following things:
We need to express the two linear equations in two different variables, we can solve them either by substitution, elimination, cross multiplication method or by graphical method. We can also check the validation of the ‘x’ and ‘y’ values by putting them in the given equations and checking whether it satisfies mathematically or not.
In this method from the given two equations of two variables, we have to substitute the equation of any one variable from one of the equations and then substitute it in the other one such that the second equation becomes an equation of one variable and thereby we can solve for that one variable.
So by using any of the above definitions we can solve the given pair of linear equations.
Complete step by step solution:
Given
$
y = 4x - 1.......................\left( i \right) \\
y = 2x - 5.......................\left( {ii} \right) \\
$
Now we are using the substitution method which is one of the algebraic methods, as given above to solve the question.
So by using the above definition, we can say that both (i) and (ii) are equations of $y$ so we can equate
(i) and (ii) to find the value of $x$.
Now equating (i) and (ii), we get:
$
\Rightarrow 4x - 1 = 2x - 5 \\
\Rightarrow 4x - 2x = 1 - 5 \\
\Rightarrow 2x = - 4 \\
\Rightarrow x = - \dfrac{4}{2} \\
\Rightarrow x = - 2..........................\left( {iii} \right) \\
$
Now to get the value of $y$ we have to substitute (iii) in either (i) or (ii).
So on substituting it in (i) we get:
$
\Rightarrow y = 2x - 5 \\
\Rightarrow y = 2\left( { - 2} \right) - 5 \\
\Rightarrow y = - 4 - 5 \\
\Rightarrow y = - 9......................\left( {iv} \right) \\
$
Therefore on solving $y = 4x - 1\;{\text{and}}\;y = 2x - 5$ by substitution method we get $x = - 2\;{\text{and}}\;{\text{y = }} - 9.$
Additional Information:
A given pair of linear equations can be solved either by graphical or algebraic method. The algebraic method is of three types:
1. Substitution Method
2. Elimination Method
3. Cross Multiplication Method
Note:
While solving a pair of linear equations one should take care of following things:
We need to express the two linear equations in two different variables, we can solve them either by substitution, elimination, cross multiplication method or by graphical method. We can also check the validation of the ‘x’ and ‘y’ values by putting them in the given equations and checking whether it satisfies mathematically or not.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE