How do you solve\[\ln \left( x \right)-4\ln 3=\ln \left( \dfrac{5}{x} \right)\]?
Answer
Verified
441.9k+ views
Hint:In the given question, we have been asked to solve\[\ln \left( x \right)-4\ln 3=\ln \left( \dfrac{5}{x} \right)\]. In order to solve the question for the value of ‘x’, first we apply the property of logarithm which states that \[a\ln b=\ln \left( {{b}^{a}} \right)\]and later by applying the quotient property of logarithmic function we will simplify further. Then to eliminate the log function we need to convert the logarithmic equation into the exponential equation and solve the equation further in a way we solve the general equation.
Formula used:
● The property of logarithm, states that \[a\ln b=\ln \left( {{b}^{a}} \right)\].
● The quotient property of logarithm which states that \[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\].
Complete step by step solution:
We have given that,
\[\ln \left( x \right)-4\ln 3=\ln \left( \dfrac{5}{x} \right)\]
Using the property of logarithm, i.e.
\[a\ln b=\ln \left( {{b}^{a}} \right)\]
Applying the property, we get
\[\ln \left( x \right)-\ln \left( {{3}^{4}} \right)=\ln \left( \dfrac{5}{x} \right)\]
Using the quotient property of logarithm, i.e.
\[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\]
Applying the quotient property of log, we get
\[\Rightarrow \ln \left( \dfrac{x}{{{3}^{4}}} \right)=\ln \left( \dfrac{5}{x} \right)\]
To eliminate log function or to cancel out the log function, we raise ‘e’ to the power log.
Converting the logarithmic equation into exponential form, we get
\[\Rightarrow {{e}^{\ln \left( \dfrac{x}{{{3}^{4}}} \right)}}={{e}^{\ln \left( \dfrac{5}{x} \right)}}\]
As we know that, \[{{e}^{\ln \left( x \right)}}=x\]
Thus,
\[\Rightarrow \dfrac{x}{{{3}^{4}}}=\dfrac{5}{x}\]
Cross multiplication in the above equation, we get
\[\Rightarrow {{x}^{2}}=5\times {{3}^{4}}\]
Simplifying the above equation, we get
\[\Rightarrow x=\pm \sqrt{5\times {{3}^{4}}}=\pm \sqrt{5}\times {{3}^{2}}\]
Therefore,
\[\Rightarrow x=+\sqrt{5}\times {{3}^{2}}=9\sqrt{5}\] and \[x=-\sqrt{5}\times {{3}^{2}}=-9\sqrt{5}\]
As the log function cannot take negative values, so x = \[-9\sqrt{5}\] is not a solution.
Thus, the possible value of ‘x’ is \[9\sqrt{5}\] .
It is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always require to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations. Students should always remember that natural log and the exponential functions are the inverse of each other, which means that if we raise the exponential function by the natural log of x, then only we would be able to find the value of ‘x’.
Formula used:
● The property of logarithm, states that \[a\ln b=\ln \left( {{b}^{a}} \right)\].
● The quotient property of logarithm which states that \[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\].
Complete step by step solution:
We have given that,
\[\ln \left( x \right)-4\ln 3=\ln \left( \dfrac{5}{x} \right)\]
Using the property of logarithm, i.e.
\[a\ln b=\ln \left( {{b}^{a}} \right)\]
Applying the property, we get
\[\ln \left( x \right)-\ln \left( {{3}^{4}} \right)=\ln \left( \dfrac{5}{x} \right)\]
Using the quotient property of logarithm, i.e.
\[\ln a-\ln b=\ln \left( \dfrac{a}{b} \right)\]
Applying the quotient property of log, we get
\[\Rightarrow \ln \left( \dfrac{x}{{{3}^{4}}} \right)=\ln \left( \dfrac{5}{x} \right)\]
To eliminate log function or to cancel out the log function, we raise ‘e’ to the power log.
Converting the logarithmic equation into exponential form, we get
\[\Rightarrow {{e}^{\ln \left( \dfrac{x}{{{3}^{4}}} \right)}}={{e}^{\ln \left( \dfrac{5}{x} \right)}}\]
As we know that, \[{{e}^{\ln \left( x \right)}}=x\]
Thus,
\[\Rightarrow \dfrac{x}{{{3}^{4}}}=\dfrac{5}{x}\]
Cross multiplication in the above equation, we get
\[\Rightarrow {{x}^{2}}=5\times {{3}^{4}}\]
Simplifying the above equation, we get
\[\Rightarrow x=\pm \sqrt{5\times {{3}^{4}}}=\pm \sqrt{5}\times {{3}^{2}}\]
Therefore,
\[\Rightarrow x=+\sqrt{5}\times {{3}^{2}}=9\sqrt{5}\] and \[x=-\sqrt{5}\times {{3}^{2}}=-9\sqrt{5}\]
As the log function cannot take negative values, so x = \[-9\sqrt{5}\] is not a solution.
Thus, the possible value of ‘x’ is \[9\sqrt{5}\] .
It is the required solution.
Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always require to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations. Students should always remember that natural log and the exponential functions are the inverse of each other, which means that if we raise the exponential function by the natural log of x, then only we would be able to find the value of ‘x’.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE