What is the spring constant in parallel connection and series connection?
Answer
Verified
405.3k+ views
Hint: Two massless springs that follow Hooke's Law are said to be connected in parallel when they are connected by a thin, vertical rod, as shown in the diagram below. The formula for capacitors connected in parallel in an electrical circuit can be used to find the value of k.
Complete answer:
For parallel:
Two massless springs that follow Hooke's Law are said to be connected in parallel when they are connected by a thin, vertical rod.
$k_{1}$ and $k_{2}$ are the spring constants for springs 1 and 2. The rod is subjected to a constant force $F$, which keeps it perpendicular to the force's direction. In order for the springs to be the same length. The springs could also be compressed if the force was reversed.
A single Hookean spring of spring constant $k$ is equivalent to this system of two parallel springs. The formula for parallel capacitors in an electrical circuit can be used to calculate the value of $k$.
$k=k_{1}+k_{2}$
For Series
Here the equivalent spring constant would be,
$k=\dfrac{{{k}_{1}}{{k}_{2}}}{{{k}_{1}}+{{k}_{2}}}$
When the same springs are connected in series, as shown in the diagram below, this is referred to as a series connection. On spring 2, a constant force F is applied. As a result, the springs are elongated, and the total extension of the combination equals the sum of each spring's elongation. Alternatively, the springs could be compressed by reversing the force direction.
A single spring of spring constant k is equivalent to this system of two springs in series. The formula for capacitors connected in series in an electrical circuit can be used to calculate the value of k.
Note: When two or more springs are connected end-to-end or point-to-point in mechanics, they are said to be in series, and when they are connected side-by-side, they are said to be in parallel; in both cases, they act as a single spring.
Complete answer:
For parallel:
Two massless springs that follow Hooke's Law are said to be connected in parallel when they are connected by a thin, vertical rod.
$k_{1}$ and $k_{2}$ are the spring constants for springs 1 and 2. The rod is subjected to a constant force $F$, which keeps it perpendicular to the force's direction. In order for the springs to be the same length. The springs could also be compressed if the force was reversed.
A single Hookean spring of spring constant $k$ is equivalent to this system of two parallel springs. The formula for parallel capacitors in an electrical circuit can be used to calculate the value of $k$.
$k=k_{1}+k_{2}$
For Series
Here the equivalent spring constant would be,
$k=\dfrac{{{k}_{1}}{{k}_{2}}}{{{k}_{1}}+{{k}_{2}}}$
When the same springs are connected in series, as shown in the diagram below, this is referred to as a series connection. On spring 2, a constant force F is applied. As a result, the springs are elongated, and the total extension of the combination equals the sum of each spring's elongation. Alternatively, the springs could be compressed by reversing the force direction.
A single spring of spring constant k is equivalent to this system of two springs in series. The formula for capacitors connected in series in an electrical circuit can be used to calculate the value of k.
Note: When two or more springs are connected end-to-end or point-to-point in mechanics, they are said to be in series, and when they are connected side-by-side, they are said to be in parallel; in both cases, they act as a single spring.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE