Answer
Verified
445.2k+ views
Hint: State the law of equipartition of energy and then prove the law of equipartition for monoatomic gas in the thermal equilibrium any degree of freedom contributing potential energy will have another $\dfrac{1}{2}KT$ associated with it.
Complete answer:
We know that the law of the equipartition of energy states that for a dynamical system in thermal equilibrium that the total energy of the system is shared equally by all the degrees of freedom. The energy associated with each degree of freedom per molecule is $\dfrac{1}{2}KT$ where, K is the Boltzmann constant. In this law an equal amount of energy will be associated with each independent energy state. Let us consider one mole of a monatomic gas in thermal equilibrium at temperature T. each gas molecule has 3 degrees of freedom due to its translational motion.
We know that according to kinetic theory of gases, and then mean kinetic energy of translational motion of a gas molecule is given by,
$\dfrac{1}{2}m{{v}^{2}}=\dfrac{3}{2}KT....\left( 1 \right)$
Where ${{v}^{2}}$ is the mean square velocity of the gas molecule of mass ‘m’, ‘K’ is Boltzmann constant and ‘T’ is the temperature of gas. The average kinetic energy is corresponding to each degree of freedom is the same that is
$\dfrac{1}{2}m{{v}_{x}}^{2}=\dfrac{1}{2}m{{v}_{y}}^{2}=\dfrac{1}{2}m{{v}_{z}}^{2}$
Using (1) equation, we get,
$\dfrac{1}{2}m{{v}_{x}}^{2}=\dfrac{1}{2}m{{v}_{y}}^{2}=\dfrac{1}{2}m{{v}_{z}}^{2}=\dfrac{1}{2}KT$
Thus, the mean kinetic energy per molecule per degree of freedom is the$\dfrac{1}{2}KT$. This result was first deduced by Boltzmann.
Additional information:
The degrees of freedom are the minimum number of the coordinates required to specify the state of a system completely.
Note:
We know that if a molecule is free to move in space, it needs three coordinates to specify its location. Thus it possesses three translational degrees of freedom. It is noted that total energy has an average energy of $\dfrac{1}{2}KBT$ in thermal equilibrium and contributes $\dfrac{1}{2}KB$ to the system’s heat capacity.
Complete answer:
We know that the law of the equipartition of energy states that for a dynamical system in thermal equilibrium that the total energy of the system is shared equally by all the degrees of freedom. The energy associated with each degree of freedom per molecule is $\dfrac{1}{2}KT$ where, K is the Boltzmann constant. In this law an equal amount of energy will be associated with each independent energy state. Let us consider one mole of a monatomic gas in thermal equilibrium at temperature T. each gas molecule has 3 degrees of freedom due to its translational motion.
We know that according to kinetic theory of gases, and then mean kinetic energy of translational motion of a gas molecule is given by,
$\dfrac{1}{2}m{{v}^{2}}=\dfrac{3}{2}KT....\left( 1 \right)$
Where ${{v}^{2}}$ is the mean square velocity of the gas molecule of mass ‘m’, ‘K’ is Boltzmann constant and ‘T’ is the temperature of gas. The average kinetic energy is corresponding to each degree of freedom is the same that is
$\dfrac{1}{2}m{{v}_{x}}^{2}=\dfrac{1}{2}m{{v}_{y}}^{2}=\dfrac{1}{2}m{{v}_{z}}^{2}$
Using (1) equation, we get,
$\dfrac{1}{2}m{{v}_{x}}^{2}=\dfrac{1}{2}m{{v}_{y}}^{2}=\dfrac{1}{2}m{{v}_{z}}^{2}=\dfrac{1}{2}KT$
Thus, the mean kinetic energy per molecule per degree of freedom is the$\dfrac{1}{2}KT$. This result was first deduced by Boltzmann.
Additional information:
The degrees of freedom are the minimum number of the coordinates required to specify the state of a system completely.
Note:
We know that if a molecule is free to move in space, it needs three coordinates to specify its location. Thus it possesses three translational degrees of freedom. It is noted that total energy has an average energy of $\dfrac{1}{2}KBT$ in thermal equilibrium and contributes $\dfrac{1}{2}KB$ to the system’s heat capacity.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths