
State and prove Bayes’ theorem.
Answer
531k+ views
Hint: Bayes’ theorem describes the probability of occurrence of an event related to any condition. To prove the Bayes’ theorem, use the concept of conditional probability formula, which is $P({E_i}|A) = \dfrac{{P({E_i} \cap A)}}{{P(A)}}$.
Complete step-by-step answer:
Bayes’ Theorem-
Bayes’ Theorem describes the probability of occurrence of an event related to any condition. It is also considered for the case of conditional probability.
Statement: Let $E_1, E_2,…...,E_n$ be a set of events associated with a sample space S, where all the events $E_1, E_2,…...,E_n$ have non zero probability of occurrence and they form a partition of S. Let A be any event associated with S, then according to Bayes’ theorem,
$P({E_i}|A) = \dfrac{{P({E_i})P(A|{E_i})}}{{\sum\limits_{k = 1}^n {P({E_k})P(A|{E_k})} }},k = 1,2,3,....,n$
Proof: According to conditional probability formula,
$P({E_i}|A) = \dfrac{{P({E_i} \cap A)}}{{P(A)}} - (1)$
Using multiplication rule of probability,
$P({E_i} \cap A) = P({E_i})P(A|{E_i}) - (2)$
Using total probability theorem,
$P(A) = \sum\limits_{k = 1}^n {P({E_k})P(A|{E_k}) - (3)} $
Putting the values from equation (2) and (3) in equation (1), we get-
$P({E_i}|A) = \dfrac{{P({E_i})P(A|{E_i})}}{{\sum\limits_{k = 1}^n {P({E_k})P(A|{E_k})} }},k = 1,2,3,....,n$ [Hence proved]
Note: Whenever it is asked to state a theorem and prove it, write the statement of the theorem first and then prove it step by step. As mentioned in the solution, after stating the Bayes’ theorem, use the standard formula of conditional probability to prove the Bayes’ theorem.
Complete step-by-step answer:
Bayes’ Theorem-
Bayes’ Theorem describes the probability of occurrence of an event related to any condition. It is also considered for the case of conditional probability.
Statement: Let $E_1, E_2,…...,E_n$ be a set of events associated with a sample space S, where all the events $E_1, E_2,…...,E_n$ have non zero probability of occurrence and they form a partition of S. Let A be any event associated with S, then according to Bayes’ theorem,
$P({E_i}|A) = \dfrac{{P({E_i})P(A|{E_i})}}{{\sum\limits_{k = 1}^n {P({E_k})P(A|{E_k})} }},k = 1,2,3,....,n$
Proof: According to conditional probability formula,
$P({E_i}|A) = \dfrac{{P({E_i} \cap A)}}{{P(A)}} - (1)$
Using multiplication rule of probability,
$P({E_i} \cap A) = P({E_i})P(A|{E_i}) - (2)$
Using total probability theorem,
$P(A) = \sum\limits_{k = 1}^n {P({E_k})P(A|{E_k}) - (3)} $
Putting the values from equation (2) and (3) in equation (1), we get-
$P({E_i}|A) = \dfrac{{P({E_i})P(A|{E_i})}}{{\sum\limits_{k = 1}^n {P({E_k})P(A|{E_k})} }},k = 1,2,3,....,n$ [Hence proved]
Note: Whenever it is asked to state a theorem and prove it, write the statement of the theorem first and then prove it step by step. As mentioned in the solution, after stating the Bayes’ theorem, use the standard formula of conditional probability to prove the Bayes’ theorem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

