Answer
Verified
387.5k+ views
Hint: Brewster’s law states that an unpolarized light ray gets polarized maximum when it falls at a certain angle of incidence, called the Brewster’s angle onto an interface of another medium. The reflected and refracted rays are perpendicular to each other. The reflected ray is completely polarized.
Formula used:
When light travels from a medium of optical density ${{n}_{1}}$ to a medium of optical density ${{n}_{2}}$, the angle of incidence ${{\theta }_{i}}$ is related to the angle of reflection ${{\theta }_{r}}$ by
${{n}_{1}}\sin {{\theta }_{i}}={{n}_{2}}\sin {{\theta }_{r}}$ $\left( \text{Snell }\!\!'\!\!\text{ s Law} \right)$
According to the laws of reflection, when light is reflected by a surface, the angle of incidence ${{\theta }_{i}}$ is equal to the angle of reflection ${{\theta }_{refl}}$. That is,
${{\theta }_{i}}={{\theta }_{refl}}$
Complete step by step answer:
Brewster’s law is a statement that says that when unpolarized light falls on an interface, the reflected light is completely polarized if the angle of incidence is a specific angle called the Brewster’s angle. In this case the angle made by the refracted ray and the reflected ray is ${{90}^{0}}$.
Let us draw a diagram to understand this better.
We will draw up a relation between the properties of the two media and the Brewster’s angle.
As shown in the figure, an unpolarized light ray falls on an interface between two media of respective optical densities ${{\eta }_{1}}$ and ${{\eta }_{2}}$ at the Brewster’s angle of incidence ${{\theta }_{B}}$. The angle of reflection is ${{\theta }_{ref}}$ and the angle of refraction is ${{\theta }_{r}}$. The reflected and refracted ray are perpendicular to each other and the reflected ray is completely polarized in one direction.
Now, when light travels from a medium of optical density ${{n}_{1}}$ to a medium of optical density ${{n}_{2}}$, the angle of incidence ${{\theta }_{i}}$ is related to the angle of reflection ${{\theta }_{r}}$ by
${{n}_{1}}\sin {{\theta }_{i}}={{n}_{2}}\sin {{\theta }_{r}}$ $\left( \text{Snell }\!\!'\!\!\text{ s Law} \right)$ ---(1)
According to the laws of reflection, when light is reflected by a surface, the angle of incidence ${{\theta }_{i}}$ is equal to the angle of reflection ${{\theta }_{refl}}$. That is,
${{\theta }_{i}}={{\theta }_{refl}}$ --(2)
Hence, using (1), we get,
${{\eta }_{1}}\sin {{\theta }_{B}}={{\eta }_{2}}\sin {{\theta }_{r}}$
$\therefore \sin {{\theta }_{r}}=\dfrac{{{\eta }_{1}}}{{{\eta }_{2}}}\sin {{\theta }_{B}}$ --(3)
From the figure’s geometry, we get,
${{\theta }_{ref}}+{{90}^{0}}+{{\theta }_{r}}={{180}^{0}}$ (Since, the angle of a straight line is ${{180}^{0}}$)
$\therefore {{\theta }_{ref}}+{{\theta }_{r}}={{180}^{0}}-{{90}^{0}}={{90}^{0}}$
$\therefore {{\theta }_{r}}={{90}^{0}}-{{\theta }_{ref}}$ ---(4)
Now, according to (2),
${{\theta }_{B}}={{\theta }_{ref}}$
$\therefore {{\theta }_{r}}={{90}^{0}}-{{\theta }_{B}}$ [Using (4)] --(5)
Using (3) and (5), we get,
$\sin \left( {{90}^{0}}-{{\theta }_{B}} \right)=\dfrac{{{\eta }_{1}}}{{{\eta }_{2}}}\sin {{\theta }_{B}}$
$\therefore \cos {{\theta }_{B}}=\dfrac{{{\eta }_{1}}}{{{\eta }_{2}}}\sin {{\theta }_{B}}$ $\left( \because \sin \left( {{90}^{0}}-\theta \right)=\cos \theta \right)$
$\therefore \dfrac{{{\eta }_{2}}}{{{\eta }_{1}}}=\dfrac{\sin {{\theta }_{B}}}{\cos {{\theta }_{B}}}=\tan {{\theta }_{B}}$ $\left( \because \dfrac{\sin \theta }{\cos \theta }=\tan \theta \right)$
$\therefore {{\eta }_{21}}=\tan {{\theta }_{B}}$
where $\left( {{\eta }_{21}}=\dfrac{{{\eta }_{2}}}{{{\eta }_{1}}} \right)$ is the refractive index of medium 2 with respect to medium 1.
$\therefore {{\theta }_{B}}={{\tan }^{-1}}\left( {{\eta }_{21}} \right)$
Therefore, we have found a relation for the Brewster’s angle of incidence and the optical properties of the two media.
Note: Students must be familiar with the derivation of the brewster’s angle since it is very important and many theoretical as well as numerical questions are based upon this concept.
The glare of sunlight from the reflection of water is due to the polarized nature of the light reaching our eyes. If polarized sunglasses are used, the glare can be reduced since the polarized sunglasses only allow light of a certain polarization to enter and minimize the glare. This technology is the reason why authentic polarized sunglasses are so expensive.
Formula used:
When light travels from a medium of optical density ${{n}_{1}}$ to a medium of optical density ${{n}_{2}}$, the angle of incidence ${{\theta }_{i}}$ is related to the angle of reflection ${{\theta }_{r}}$ by
${{n}_{1}}\sin {{\theta }_{i}}={{n}_{2}}\sin {{\theta }_{r}}$ $\left( \text{Snell }\!\!'\!\!\text{ s Law} \right)$
According to the laws of reflection, when light is reflected by a surface, the angle of incidence ${{\theta }_{i}}$ is equal to the angle of reflection ${{\theta }_{refl}}$. That is,
${{\theta }_{i}}={{\theta }_{refl}}$
Complete step by step answer:
Brewster’s law is a statement that says that when unpolarized light falls on an interface, the reflected light is completely polarized if the angle of incidence is a specific angle called the Brewster’s angle. In this case the angle made by the refracted ray and the reflected ray is ${{90}^{0}}$.
Let us draw a diagram to understand this better.
We will draw up a relation between the properties of the two media and the Brewster’s angle.
As shown in the figure, an unpolarized light ray falls on an interface between two media of respective optical densities ${{\eta }_{1}}$ and ${{\eta }_{2}}$ at the Brewster’s angle of incidence ${{\theta }_{B}}$. The angle of reflection is ${{\theta }_{ref}}$ and the angle of refraction is ${{\theta }_{r}}$. The reflected and refracted ray are perpendicular to each other and the reflected ray is completely polarized in one direction.
Now, when light travels from a medium of optical density ${{n}_{1}}$ to a medium of optical density ${{n}_{2}}$, the angle of incidence ${{\theta }_{i}}$ is related to the angle of reflection ${{\theta }_{r}}$ by
${{n}_{1}}\sin {{\theta }_{i}}={{n}_{2}}\sin {{\theta }_{r}}$ $\left( \text{Snell }\!\!'\!\!\text{ s Law} \right)$ ---(1)
According to the laws of reflection, when light is reflected by a surface, the angle of incidence ${{\theta }_{i}}$ is equal to the angle of reflection ${{\theta }_{refl}}$. That is,
${{\theta }_{i}}={{\theta }_{refl}}$ --(2)
Hence, using (1), we get,
${{\eta }_{1}}\sin {{\theta }_{B}}={{\eta }_{2}}\sin {{\theta }_{r}}$
$\therefore \sin {{\theta }_{r}}=\dfrac{{{\eta }_{1}}}{{{\eta }_{2}}}\sin {{\theta }_{B}}$ --(3)
From the figure’s geometry, we get,
${{\theta }_{ref}}+{{90}^{0}}+{{\theta }_{r}}={{180}^{0}}$ (Since, the angle of a straight line is ${{180}^{0}}$)
$\therefore {{\theta }_{ref}}+{{\theta }_{r}}={{180}^{0}}-{{90}^{0}}={{90}^{0}}$
$\therefore {{\theta }_{r}}={{90}^{0}}-{{\theta }_{ref}}$ ---(4)
Now, according to (2),
${{\theta }_{B}}={{\theta }_{ref}}$
$\therefore {{\theta }_{r}}={{90}^{0}}-{{\theta }_{B}}$ [Using (4)] --(5)
Using (3) and (5), we get,
$\sin \left( {{90}^{0}}-{{\theta }_{B}} \right)=\dfrac{{{\eta }_{1}}}{{{\eta }_{2}}}\sin {{\theta }_{B}}$
$\therefore \cos {{\theta }_{B}}=\dfrac{{{\eta }_{1}}}{{{\eta }_{2}}}\sin {{\theta }_{B}}$ $\left( \because \sin \left( {{90}^{0}}-\theta \right)=\cos \theta \right)$
$\therefore \dfrac{{{\eta }_{2}}}{{{\eta }_{1}}}=\dfrac{\sin {{\theta }_{B}}}{\cos {{\theta }_{B}}}=\tan {{\theta }_{B}}$ $\left( \because \dfrac{\sin \theta }{\cos \theta }=\tan \theta \right)$
$\therefore {{\eta }_{21}}=\tan {{\theta }_{B}}$
where $\left( {{\eta }_{21}}=\dfrac{{{\eta }_{2}}}{{{\eta }_{1}}} \right)$ is the refractive index of medium 2 with respect to medium 1.
$\therefore {{\theta }_{B}}={{\tan }^{-1}}\left( {{\eta }_{21}} \right)$
Therefore, we have found a relation for the Brewster’s angle of incidence and the optical properties of the two media.
Note: Students must be familiar with the derivation of the brewster’s angle since it is very important and many theoretical as well as numerical questions are based upon this concept.
The glare of sunlight from the reflection of water is due to the polarized nature of the light reaching our eyes. If polarized sunglasses are used, the glare can be reduced since the polarized sunglasses only allow light of a certain polarization to enter and minimize the glare. This technology is the reason why authentic polarized sunglasses are so expensive.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE