Answer
Verified
459k+ views
Hint: Biot-Savart law is the theory that derives a relation between a current carrying element and the magnetic field due to it at a point which is at a distance from the current carrying element. It is analogous to Coulomb’s law in electrostatics.
Complete answer:
Biot-Savart’s law in magnetostatics is important as Coulomb’s law is important to Electrostatics. Biot-Savart’s law deals with the moving charges that constitute a magnetic field at a point which is at a distance r from the element carrying the moving charges.
Consider an infinitesimal current carrying element ‘dl’ of a conductor. The magnetic field ‘dB’ produced by it is to be determined at a point P which is ‘r’ distance from the element. Let the current carrying element ‘dl’ be at an angle \[\theta \] with the displacement joining the point P, i.e., r.
Biot-Savart’s law states that the magnetic field at point P is proportional to the length of the element dl, the current flowing through it I and inversely proportional to the square of the distance r. The direction of the field is perpendicular to the plane containing both dl and r.
The magnetic field along the direction of dl is always zero.
We can derive the formula for the Biot-Savart’s law as –
\[\begin{align}
& d\mathbf{B}\propto \dfrac{Id\mathbf{l}\times \mathbf{r}}{{{r}^{3}}} \\
& i.e.,\text{ d}\mathbf{B}\text{=}\dfrac{{{\mu }_{0}}}{4\pi }\dfrac{Id\mathbf{l}\times \mathbf{r}}{{{r}^{3}}} \\
\end{align}\]
The above form gives the equation of Biot-Savart’s law in vector form.
The magnitude of the magnetic field is given by,
\[\begin{align}
& \left| d\mathbf{B} \right|=\dfrac{{{\mu }_{0}}}{4\pi }\dfrac{Idl\sin \theta }{{{r}^{2}}} \\
& \text{where},\text{ }\dfrac{{{\mu }_{0}}}{4\pi }={{10}^{-7}}Tm/A \\
\end{align}\]
The proportionality constant is the permeability of free space.
So, the required vector form of the law is –
\[\text{d}\mathbf{B}\text{=}\dfrac{{{\mu }_{0}}}{4\pi }\dfrac{Id\mathbf{l}\times \mathbf{r}}{{{r}^{3}}}\]
And the direction of the magnetic field is perpendicular to both dl and r.
Note:
The magnetic field at the point is not just due to one point on the current carrying element. We have to integrate along the length of the conductor to find the total magnetic field at a point P. The right-hand thumb rule can give the direction of the magnetic field.
Complete answer:
Biot-Savart’s law in magnetostatics is important as Coulomb’s law is important to Electrostatics. Biot-Savart’s law deals with the moving charges that constitute a magnetic field at a point which is at a distance r from the element carrying the moving charges.
Consider an infinitesimal current carrying element ‘dl’ of a conductor. The magnetic field ‘dB’ produced by it is to be determined at a point P which is ‘r’ distance from the element. Let the current carrying element ‘dl’ be at an angle \[\theta \] with the displacement joining the point P, i.e., r.
Biot-Savart’s law states that the magnetic field at point P is proportional to the length of the element dl, the current flowing through it I and inversely proportional to the square of the distance r. The direction of the field is perpendicular to the plane containing both dl and r.
The magnetic field along the direction of dl is always zero.
We can derive the formula for the Biot-Savart’s law as –
\[\begin{align}
& d\mathbf{B}\propto \dfrac{Id\mathbf{l}\times \mathbf{r}}{{{r}^{3}}} \\
& i.e.,\text{ d}\mathbf{B}\text{=}\dfrac{{{\mu }_{0}}}{4\pi }\dfrac{Id\mathbf{l}\times \mathbf{r}}{{{r}^{3}}} \\
\end{align}\]
The above form gives the equation of Biot-Savart’s law in vector form.
The magnitude of the magnetic field is given by,
\[\begin{align}
& \left| d\mathbf{B} \right|=\dfrac{{{\mu }_{0}}}{4\pi }\dfrac{Idl\sin \theta }{{{r}^{2}}} \\
& \text{where},\text{ }\dfrac{{{\mu }_{0}}}{4\pi }={{10}^{-7}}Tm/A \\
\end{align}\]
The proportionality constant is the permeability of free space.
So, the required vector form of the law is –
\[\text{d}\mathbf{B}\text{=}\dfrac{{{\mu }_{0}}}{4\pi }\dfrac{Id\mathbf{l}\times \mathbf{r}}{{{r}^{3}}}\]
And the direction of the magnetic field is perpendicular to both dl and r.
Note:
The magnetic field at the point is not just due to one point on the current carrying element. We have to integrate along the length of the conductor to find the total magnetic field at a point P. The right-hand thumb rule can give the direction of the magnetic field.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE