Answer
Verified
407k+ views
Hint: Potentiometer is a three-terminal resistor, which produces a voltage divider, through sliding or rolling contact. $r=R\left( \dfrac{{{l}_{1}}}{{{l}_{2}}}-1 \right)$ and $E=\dfrac{\rho L}{A}I=KL$, we can solve the question.
Formula used: $r=R\left( \dfrac{{{l}_{1}}}{{{l}_{2}}}-1 \right)$ and, $E=\dfrac{\rho L}{A}I=KL$
Complete step-by-step answer:
Potentiometer is a three-terminal resistor, which produces a voltage divider, through sliding or rolling contact. It works on the principle that potential across the wire depends on the length of the wire, which has uniform cross-sectional area and constant current flowing through it. It can be used to measure the internal resistance of the primary cell.
Connections are made as given in the diagram.
We know, $V=IR$ Ohm’s law. Where $I$ is current in the circuit, $R$ is the total resistance and $V$ is the voltage drop.
Also $R=\dfrac{\rho L}{A}$. Where $\rho$ is the resistivity, $A$ is the area of cross-section of the wire, $L$ is the length of the wire.
For any potentiometer $\rho\;,A$ are constant.
Then, according to the principle, $E=\dfrac{\rho L}{A}I=KL$, where $E$ is the emf of the cell and $K$ is the potential gradient.
Here $E$ is the emf of the primary cell, and $r$ is its internal resistance. To find $r$, plug in${K_{2}}$ the resistance box $R$, the potentiometer is balanced at say $l_{1}$,
Then$E=Kl_{1}=I(R+r)$.
When the plug out the $K_{2}$, when the potentiometer is balanced at say $l_{2}$, then$V=Kl_{2}=IR$
$\dfrac{E}{V}=\dfrac{ Kl_{1}}{ Kl_{2}}=\dfrac{ I(R+r)}{IR}$
$\dfrac{ l_{1}}{ l_{2}}=\dfrac{ (R+r)}{R}$
Thus $r=R\left( \dfrac{{{l}_{1}}}{{{l}_{2}}}-1 \right)$
Using the given, emf of cell= $E_{1}= 1.25V\; , l_{1}=35cm$ and $E_{2}=E\;, l_{2}=63cm$
$\dfrac{E_{1}}{E_{2}}=\dfrac{l_{1}}{l_{2}}$
$\dfrac{1.25}{E}=\dfrac{35}{63}$
$E=\dfrac{63}{35}\times 1.25=2.25 V$
Hence the emf of the unknown is 2.25 V.
Note: Clearly understand the difference between what happens when $K_{2}$ is plugged in and out. Try to remember the formula used. Remember the circuit diagram and the principle. Observe that the equations are interrelated, in terms of the potential.
Formula used: $r=R\left( \dfrac{{{l}_{1}}}{{{l}_{2}}}-1 \right)$ and, $E=\dfrac{\rho L}{A}I=KL$
Complete step-by-step answer:
Potentiometer is a three-terminal resistor, which produces a voltage divider, through sliding or rolling contact. It works on the principle that potential across the wire depends on the length of the wire, which has uniform cross-sectional area and constant current flowing through it. It can be used to measure the internal resistance of the primary cell.
Connections are made as given in the diagram.
We know, $V=IR$ Ohm’s law. Where $I$ is current in the circuit, $R$ is the total resistance and $V$ is the voltage drop.
Also $R=\dfrac{\rho L}{A}$. Where $\rho$ is the resistivity, $A$ is the area of cross-section of the wire, $L$ is the length of the wire.
For any potentiometer $\rho\;,A$ are constant.
Then, according to the principle, $E=\dfrac{\rho L}{A}I=KL$, where $E$ is the emf of the cell and $K$ is the potential gradient.
Here $E$ is the emf of the primary cell, and $r$ is its internal resistance. To find $r$, plug in${K_{2}}$ the resistance box $R$, the potentiometer is balanced at say $l_{1}$,
Then$E=Kl_{1}=I(R+r)$.
When the plug out the $K_{2}$, when the potentiometer is balanced at say $l_{2}$, then$V=Kl_{2}=IR$
$\dfrac{E}{V}=\dfrac{ Kl_{1}}{ Kl_{2}}=\dfrac{ I(R+r)}{IR}$
$\dfrac{ l_{1}}{ l_{2}}=\dfrac{ (R+r)}{R}$
Thus $r=R\left( \dfrac{{{l}_{1}}}{{{l}_{2}}}-1 \right)$
Using the given, emf of cell= $E_{1}= 1.25V\; , l_{1}=35cm$ and $E_{2}=E\;, l_{2}=63cm$
$\dfrac{E_{1}}{E_{2}}=\dfrac{l_{1}}{l_{2}}$
$\dfrac{1.25}{E}=\dfrac{35}{63}$
$E=\dfrac{63}{35}\times 1.25=2.25 V$
Hence the emf of the unknown is 2.25 V.
Note: Clearly understand the difference between what happens when $K_{2}$ is plugged in and out. Try to remember the formula used. Remember the circuit diagram and the principle. Observe that the equations are interrelated, in terms of the potential.
Recently Updated Pages
Which of the following is a redox reaction class null chemistry null
A conducting circular loop of radius r carries a constant class 12 physics JEE_Main
Two forms of Dglucopyranose are called class 12 chemistry JEE_Main
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
When a glass slab is placed on a cross made on a sheet class 12 physics JEE_Main
In an insulator the forbidden energy gap between the class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE