Statement 1: Eccentricity of an ellipse whose length of latus rectum is the same as the distance between its foci, is $2\sin {18^ \circ }$
Statement 2: For \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\], eccentricity \[e = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} \]
A). Statement 1 is true, Statement 2 is true and Statement 2 is the correct explanation for statement 1.
B). Statement 1 is true, Statement 2 is true and Statement 2 is not the correct explanation for statement 1.
C). Statement 1 is true, Statement 2 is false.
D). Statement 1 is false, Statement 2 is true.
E). Both statements are false.
Answer
Verified
470.7k+ views
Hint: Start by making an ellipse with all the important details marked. Find a relation between foci and latus rectum and use the formula of eccentricity to find out the desired value. Check the validity of each statement and mark the correct option.
Complete step-by-step answer:
In order to answer or verify any statement, we need to understand about Ellipse first, Discuss its Focii, Eccentricity, major and minor axes.
Refer diagram for better understanding.
$[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1;{\text{ where }}a > b \to eqn(1)]$
a > b means the major axis lies on x-axis.
Focus (ae,0) and (-ae,0), which gives the distance between foci as 2ae.
Length of latus rectum = $[\dfrac{{2{b^2}}}{a}]$
Eccentricity = $[e = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} \to eqn(2)]$
Now, We know that the distance between the foci is equal to the length of the latus rectum.
$[2ae = \dfrac{{2{b^2}}}{a} ]$
$[ \Rightarrow e = \dfrac{{{b^2}}}{{{a^2}}} \to eqn(3)]$
Now, from eqn(2) and eqn(3) , we get
$[\dfrac{{{b^2}}}{{{a^2}}} = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} ]$
Squaring both the sides, we get
$ {\left[ {\dfrac{{{b^2}}}{{{a^2}}}} \right]^2} = 1 - \dfrac{{{b^2}}}{{{a^2}}} \\
\Rightarrow {e^2} = 1 - e \\
\Rightarrow {e^2} + e - 1 = 0 \\ $
Solving this quadratic equation by Discriminant rule[ for any quadratic equation $a{x^2} + bx + c = 0{\text{ , D = }}{b^2} - 4ac$and roots of the equation when D>0 is $ = \dfrac{{ - b \pm \sqrt D }}{{2a}}]$
We’ll obtain two values of e
$[e = \dfrac{{ - 1 \pm \sqrt 5 }}{2}]$
But the eccentricity can never be negative
$[\therefore e = \dfrac{{ - 1 + \sqrt 5 }}{2}]$
This can also be written as
$[e = 2 \times (\dfrac{{ - 1 + \sqrt 5 }}{4})]$
And we know that $[\sin {18^ \circ } = \dfrac{{ - 1 + \sqrt 5 }}{4}]$
Which shows $[e = 2\sin {18^ \circ }. ]$
This is in accordance with statement 1.
Therefore, Both the statements are true and statement 2 is the correct explanation of statement 1.
So, option A is the correct answer.
Note: All the properties and features of Parabola, Ellipse, Circle, Hyperbola must be known very well in order to solve such similar problems. Attention is to be given while forming the relations and must consider the possibilities of negative or positive quantities. For e.g. Eccentricity cannot be negative, Always take positive value.
Complete step-by-step answer:
In order to answer or verify any statement, we need to understand about Ellipse first, Discuss its Focii, Eccentricity, major and minor axes.
Refer diagram for better understanding.
$[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1;{\text{ where }}a > b \to eqn(1)]$
a > b means the major axis lies on x-axis.
Focus (ae,0) and (-ae,0), which gives the distance between foci as 2ae.
Length of latus rectum = $[\dfrac{{2{b^2}}}{a}]$
Eccentricity = $[e = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} \to eqn(2)]$
Now, We know that the distance between the foci is equal to the length of the latus rectum.
$[2ae = \dfrac{{2{b^2}}}{a} ]$
$[ \Rightarrow e = \dfrac{{{b^2}}}{{{a^2}}} \to eqn(3)]$
Now, from eqn(2) and eqn(3) , we get
$[\dfrac{{{b^2}}}{{{a^2}}} = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} ]$
Squaring both the sides, we get
$ {\left[ {\dfrac{{{b^2}}}{{{a^2}}}} \right]^2} = 1 - \dfrac{{{b^2}}}{{{a^2}}} \\
\Rightarrow {e^2} = 1 - e \\
\Rightarrow {e^2} + e - 1 = 0 \\ $
Solving this quadratic equation by Discriminant rule[ for any quadratic equation $a{x^2} + bx + c = 0{\text{ , D = }}{b^2} - 4ac$and roots of the equation when D>0 is $ = \dfrac{{ - b \pm \sqrt D }}{{2a}}]$
We’ll obtain two values of e
$[e = \dfrac{{ - 1 \pm \sqrt 5 }}{2}]$
But the eccentricity can never be negative
$[\therefore e = \dfrac{{ - 1 + \sqrt 5 }}{2}]$
This can also be written as
$[e = 2 \times (\dfrac{{ - 1 + \sqrt 5 }}{4})]$
And we know that $[\sin {18^ \circ } = \dfrac{{ - 1 + \sqrt 5 }}{4}]$
Which shows $[e = 2\sin {18^ \circ }. ]$
This is in accordance with statement 1.
Therefore, Both the statements are true and statement 2 is the correct explanation of statement 1.
So, option A is the correct answer.
Note: All the properties and features of Parabola, Ellipse, Circle, Hyperbola must be known very well in order to solve such similar problems. Attention is to be given while forming the relations and must consider the possibilities of negative or positive quantities. For e.g. Eccentricity cannot be negative, Always take positive value.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE