Answer
Verified
458.7k+ views
Hint: Start by making an ellipse with all the important details marked. Find a relation between foci and latus rectum and use the formula of eccentricity to find out the desired value. Check the validity of each statement and mark the correct option.
Complete step-by-step answer:
In order to answer or verify any statement, we need to understand about Ellipse first, Discuss its Focii, Eccentricity, major and minor axes.
Refer diagram for better understanding.
$[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1;{\text{ where }}a > b \to eqn(1)]$
a > b means the major axis lies on x-axis.
Focus (ae,0) and (-ae,0), which gives the distance between foci as 2ae.
Length of latus rectum = $[\dfrac{{2{b^2}}}{a}]$
Eccentricity = $[e = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} \to eqn(2)]$
Now, We know that the distance between the foci is equal to the length of the latus rectum.
$[2ae = \dfrac{{2{b^2}}}{a} ]$
$[ \Rightarrow e = \dfrac{{{b^2}}}{{{a^2}}} \to eqn(3)]$
Now, from eqn(2) and eqn(3) , we get
$[\dfrac{{{b^2}}}{{{a^2}}} = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} ]$
Squaring both the sides, we get
$ {\left[ {\dfrac{{{b^2}}}{{{a^2}}}} \right]^2} = 1 - \dfrac{{{b^2}}}{{{a^2}}} \\
\Rightarrow {e^2} = 1 - e \\
\Rightarrow {e^2} + e - 1 = 0 \\ $
Solving this quadratic equation by Discriminant rule[ for any quadratic equation $a{x^2} + bx + c = 0{\text{ , D = }}{b^2} - 4ac$and roots of the equation when D>0 is $ = \dfrac{{ - b \pm \sqrt D }}{{2a}}]$
We’ll obtain two values of e
$[e = \dfrac{{ - 1 \pm \sqrt 5 }}{2}]$
But the eccentricity can never be negative
$[\therefore e = \dfrac{{ - 1 + \sqrt 5 }}{2}]$
This can also be written as
$[e = 2 \times (\dfrac{{ - 1 + \sqrt 5 }}{4})]$
And we know that $[\sin {18^ \circ } = \dfrac{{ - 1 + \sqrt 5 }}{4}]$
Which shows $[e = 2\sin {18^ \circ }. ]$
This is in accordance with statement 1.
Therefore, Both the statements are true and statement 2 is the correct explanation of statement 1.
So, option A is the correct answer.
Note: All the properties and features of Parabola, Ellipse, Circle, Hyperbola must be known very well in order to solve such similar problems. Attention is to be given while forming the relations and must consider the possibilities of negative or positive quantities. For e.g. Eccentricity cannot be negative, Always take positive value.
Complete step-by-step answer:
In order to answer or verify any statement, we need to understand about Ellipse first, Discuss its Focii, Eccentricity, major and minor axes.
Refer diagram for better understanding.
$[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1;{\text{ where }}a > b \to eqn(1)]$
a > b means the major axis lies on x-axis.
Focus (ae,0) and (-ae,0), which gives the distance between foci as 2ae.
Length of latus rectum = $[\dfrac{{2{b^2}}}{a}]$
Eccentricity = $[e = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} \to eqn(2)]$
Now, We know that the distance between the foci is equal to the length of the latus rectum.
$[2ae = \dfrac{{2{b^2}}}{a} ]$
$[ \Rightarrow e = \dfrac{{{b^2}}}{{{a^2}}} \to eqn(3)]$
Now, from eqn(2) and eqn(3) , we get
$[\dfrac{{{b^2}}}{{{a^2}}} = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} ]$
Squaring both the sides, we get
$ {\left[ {\dfrac{{{b^2}}}{{{a^2}}}} \right]^2} = 1 - \dfrac{{{b^2}}}{{{a^2}}} \\
\Rightarrow {e^2} = 1 - e \\
\Rightarrow {e^2} + e - 1 = 0 \\ $
Solving this quadratic equation by Discriminant rule[ for any quadratic equation $a{x^2} + bx + c = 0{\text{ , D = }}{b^2} - 4ac$and roots of the equation when D>0 is $ = \dfrac{{ - b \pm \sqrt D }}{{2a}}]$
We’ll obtain two values of e
$[e = \dfrac{{ - 1 \pm \sqrt 5 }}{2}]$
But the eccentricity can never be negative
$[\therefore e = \dfrac{{ - 1 + \sqrt 5 }}{2}]$
This can also be written as
$[e = 2 \times (\dfrac{{ - 1 + \sqrt 5 }}{4})]$
And we know that $[\sin {18^ \circ } = \dfrac{{ - 1 + \sqrt 5 }}{4}]$
Which shows $[e = 2\sin {18^ \circ }. ]$
This is in accordance with statement 1.
Therefore, Both the statements are true and statement 2 is the correct explanation of statement 1.
So, option A is the correct answer.
Note: All the properties and features of Parabola, Ellipse, Circle, Hyperbola must be known very well in order to solve such similar problems. Attention is to be given while forming the relations and must consider the possibilities of negative or positive quantities. For e.g. Eccentricity cannot be negative, Always take positive value.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which of the following is the capital of the union class 9 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Name the metals of the coins Tanka Shashgani and Jital class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life