Answer
Verified
429k+ views
Hint: Here, we will use the definition of u-substitution method. Integral Substitute rule or a u-substitution is a process of evaluating the integrals by substituting the variables for derivatives and antiderivatives. Using this we will discuss the steps involved in using the Integral substitute rule with an example. Integration is the process of adding the small parts to find the whole parts.
Formula Used:
We will use the following formulas:
1. Derivative formula: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
2. Integral Formula: \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
Complete Step by Step Solution:
We know in the Integral Substitute rule, we substitute the complex function in variables by using the ILATE rule.
If there is an integral function \[g\left( x \right)\], then we substitute the integrand \[g\left( x \right)\] as \[u\] and \[g'\left( x \right)\] which is also an integrand in the integral function.
So if \[g\left( x \right) = u\], then \[du = g'\left( x \right)dx\] .
Now, we will evaluate the integral in terms of \[u\].
Finally, we will rewrite the terms in terms of \[x\]and the expression \[g\left( x \right)\].
Now we will use the integral substitute rule in the following example.
Example: Evaluate: \[\int {6x{{\left( {3{x^2} + 7} \right)}^3}} dx\]
Now, we will substitute the function \[\left( {3{x^2} + 7} \right)\] as \[u\].
\[u = 3{x^2} + 7\]
Now, we will differentiate the variable with respect to \[x\] by using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{du}}{{dx}} = 6x\\ \Rightarrow du = 6xdx\end{array}\]
So, we can write \[\int {6x{{\left( {3{x^2} + 7} \right)}^3}} dx\] as:
\[\int {6x{{\left( {3{x^2} + 7} \right)}^3}} dx = \int {{u^3}du} \]
Now, we will integrate the variable by using the integral formula \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\], we get
\[ \Rightarrow \int {6x{{\left( {3{x^2} + 7} \right)}^3}} dx = \dfrac{{{u^4}}}{4} + c\]
Now, again by rewriting the expression in terms of \[x\] , we get
\[ \Rightarrow \int {6x{{\left( {3{x^2} + 7} \right)}^3}} dx = \dfrac{{{{\left( {3{x^2} + 7} \right)}^4}}}{4} + c\]
Therefore, this would be the process of integrating a function by using the Integral substitute rule.
Note:
We know that while performing the Integration by substitution, we will substitute the integrand if the integrand is a radicand under a root, the base in a power with real exponent, the exponent with a real base, and the denominator in a fraction. Substitution rule is used to determine the antiderivatives. The substitution method is also a method of integrating functions of various variables and is also used in evaluating the integral using Integration by Parts formula. If the first substitution did not work then try it with a different integrand for substitution.
Formula Used:
We will use the following formulas:
1. Derivative formula: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
2. Integral Formula: \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
Complete Step by Step Solution:
We know in the Integral Substitute rule, we substitute the complex function in variables by using the ILATE rule.
If there is an integral function \[g\left( x \right)\], then we substitute the integrand \[g\left( x \right)\] as \[u\] and \[g'\left( x \right)\] which is also an integrand in the integral function.
So if \[g\left( x \right) = u\], then \[du = g'\left( x \right)dx\] .
Now, we will evaluate the integral in terms of \[u\].
Finally, we will rewrite the terms in terms of \[x\]and the expression \[g\left( x \right)\].
Now we will use the integral substitute rule in the following example.
Example: Evaluate: \[\int {6x{{\left( {3{x^2} + 7} \right)}^3}} dx\]
Now, we will substitute the function \[\left( {3{x^2} + 7} \right)\] as \[u\].
\[u = 3{x^2} + 7\]
Now, we will differentiate the variable with respect to \[x\] by using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[\begin{array}{l} \Rightarrow \dfrac{{du}}{{dx}} = 6x\\ \Rightarrow du = 6xdx\end{array}\]
So, we can write \[\int {6x{{\left( {3{x^2} + 7} \right)}^3}} dx\] as:
\[\int {6x{{\left( {3{x^2} + 7} \right)}^3}} dx = \int {{u^3}du} \]
Now, we will integrate the variable by using the integral formula \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\], we get
\[ \Rightarrow \int {6x{{\left( {3{x^2} + 7} \right)}^3}} dx = \dfrac{{{u^4}}}{4} + c\]
Now, again by rewriting the expression in terms of \[x\] , we get
\[ \Rightarrow \int {6x{{\left( {3{x^2} + 7} \right)}^3}} dx = \dfrac{{{{\left( {3{x^2} + 7} \right)}^4}}}{4} + c\]
Therefore, this would be the process of integrating a function by using the Integral substitute rule.
Note:
We know that while performing the Integration by substitution, we will substitute the integrand if the integrand is a radicand under a root, the base in a power with real exponent, the exponent with a real base, and the denominator in a fraction. Substitution rule is used to determine the antiderivatives. The substitution method is also a method of integrating functions of various variables and is also used in evaluating the integral using Integration by Parts formula. If the first substitution did not work then try it with a different integrand for substitution.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE