Answer
Verified
453k+ views
Hint: Generally when temperature difference is maintained then heat transfers from higher temperature body to the lower temperature body. The amount of heat transferred depends upon the various factors like the temperature difference, thermal resistance of the material.
Formula used:
$\eqalign{
& R = \dfrac{L}{{KA}} \cr
& H = \dfrac{{\Delta T}}{R} \cr} $
Complete answer:
Flow of a quantity with time is known as a current. It can be fluid current or heat current or electric current.
In case of fluid current a pressure difference is maintained and that drives the flow of fluid and fluid always flows from high pressure region to the low pressure region and fluid current is governed by fluid resistance too ,whereas in electric current the electric charge flows with time and the voltage difference and electric resistance combined will govern the electric current. Charge flows from higher voltage to lower voltage naturally.
Similarly in thermal current it is governed by temperature difference and thermal resistance.
Thermal resistance of a thermal conductor of length ‘L’ and cross sectional area ‘A’ and thermal conductivity ‘K’ is given by $R = \dfrac{L}{{KA}}$
Heat current is given as $H = \dfrac{{\Delta T}}{R}$ for the length ‘x’ we have
$\eqalign{
& H = \dfrac{{\Delta T}}{R} \cr
& \Rightarrow H = \dfrac{{kA\Delta T}}{L} \cr
& \therefore {H_x} = kA\dfrac{{dT}}{{dx}} \cr} $
Here $\dfrac{{dT}}{{dx}}$ is temperature gradient.
$\eqalign{
& T = {T_0}\sin \left( {\dfrac{{\pi x}}{L}} \right) \cr
& \Rightarrow \dfrac{{dT}}{{dx}} = {T_0}\dfrac{\pi }{L}\cos \left( {\dfrac{{\pi x}}{L}} \right) \cr
& at{\text{ }}x = \dfrac{L}{2} \cr
& \Rightarrow \dfrac{{dT}}{{dx}} = {T_0}\dfrac{\pi }{L}\cos \left( {\dfrac{{\pi \left( {\dfrac{L}{2}} \right)}}{L}} \right) \cr} $
$\eqalign{
& \Rightarrow \dfrac{{dT}}{{dx}} = {T_0}\dfrac{\pi }{L}\cos \left( {\dfrac{\pi }{2}} \right) \cr
& \therefore \dfrac{{dT}}{{dx}} = 0 \cr} $
Since the temperature gradient is zero at the center, heat current also will be zero.
Hence option A is the answer.
Note:
As long as the temperature difference is maintained between the ends of the rods, the heat keeps on flowing. Temperature gradient here between the initial point and the center of the rod is attained as zero. That means the rod initial point and the center of the rod are at the same temperature that is zero degree Celsius.
Formula used:
$\eqalign{
& R = \dfrac{L}{{KA}} \cr
& H = \dfrac{{\Delta T}}{R} \cr} $
Complete answer:
Flow of a quantity with time is known as a current. It can be fluid current or heat current or electric current.
In case of fluid current a pressure difference is maintained and that drives the flow of fluid and fluid always flows from high pressure region to the low pressure region and fluid current is governed by fluid resistance too ,whereas in electric current the electric charge flows with time and the voltage difference and electric resistance combined will govern the electric current. Charge flows from higher voltage to lower voltage naturally.
Similarly in thermal current it is governed by temperature difference and thermal resistance.
Thermal resistance of a thermal conductor of length ‘L’ and cross sectional area ‘A’ and thermal conductivity ‘K’ is given by $R = \dfrac{L}{{KA}}$
Heat current is given as $H = \dfrac{{\Delta T}}{R}$ for the length ‘x’ we have
$\eqalign{
& H = \dfrac{{\Delta T}}{R} \cr
& \Rightarrow H = \dfrac{{kA\Delta T}}{L} \cr
& \therefore {H_x} = kA\dfrac{{dT}}{{dx}} \cr} $
Here $\dfrac{{dT}}{{dx}}$ is temperature gradient.
$\eqalign{
& T = {T_0}\sin \left( {\dfrac{{\pi x}}{L}} \right) \cr
& \Rightarrow \dfrac{{dT}}{{dx}} = {T_0}\dfrac{\pi }{L}\cos \left( {\dfrac{{\pi x}}{L}} \right) \cr
& at{\text{ }}x = \dfrac{L}{2} \cr
& \Rightarrow \dfrac{{dT}}{{dx}} = {T_0}\dfrac{\pi }{L}\cos \left( {\dfrac{{\pi \left( {\dfrac{L}{2}} \right)}}{L}} \right) \cr} $
$\eqalign{
& \Rightarrow \dfrac{{dT}}{{dx}} = {T_0}\dfrac{\pi }{L}\cos \left( {\dfrac{\pi }{2}} \right) \cr
& \therefore \dfrac{{dT}}{{dx}} = 0 \cr} $
Since the temperature gradient is zero at the center, heat current also will be zero.
Hence option A is the answer.
Note:
As long as the temperature difference is maintained between the ends of the rods, the heat keeps on flowing. Temperature gradient here between the initial point and the center of the rod is attained as zero. That means the rod initial point and the center of the rod are at the same temperature that is zero degree Celsius.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE