Answer
Verified
429.6k+ views
Hint: First take an exponential number and apply cube root to it and then use the law of indices for fractional powers to express the cube root with the exponent of the considered exponential number.
Law of indices for fractional power for “a” raise to the power “b divided by c” is given as
${a^{\dfrac{b}{c}}} = \sqrt[c]{{{a^b}}}$
Use this formula to express the cube root in the exponent.
Complete step by step solution:
Let us take a number (say $x$) which is raised to the power of some other number (say $a$). Therefore the exponential number will look like the following:
$ = {x^a}$
Now the cube root of this exponential number will be given as
$ = \sqrt[3]{{{x^a}}}$
From the law of indices for fractional powers we know that
$\sqrt[c]{{{a^b}}} = {a^{\dfrac{b}{c}}}$
Using this to express cube root with the exponent of the considered exponential number
$ \Rightarrow \sqrt[3]{{{x^a}}} = {x^{\dfrac{a}{3}}}$
Therefore cube root of an exponent can be taken as the power equals to the division of the given exponent with $3$.
Additional Information:
Physical significance of cube root could be understood by the length of a side of the cube whose volume is equal to the cube of the length of the sides of the cube.
Note: Cube root of a number gives the number which when multiplied by itself two times gives the number whose cube root is taken. Say if the cube root of the number $k$ equals the number $j$ then we can write $j \times j \times j = k$ . Cube and cube root are inverse operations to each other.
Law of indices for fractional power for “a” raise to the power “b divided by c” is given as
${a^{\dfrac{b}{c}}} = \sqrt[c]{{{a^b}}}$
Use this formula to express the cube root in the exponent.
Complete step by step solution:
Let us take a number (say $x$) which is raised to the power of some other number (say $a$). Therefore the exponential number will look like the following:
$ = {x^a}$
Now the cube root of this exponential number will be given as
$ = \sqrt[3]{{{x^a}}}$
From the law of indices for fractional powers we know that
$\sqrt[c]{{{a^b}}} = {a^{\dfrac{b}{c}}}$
Using this to express cube root with the exponent of the considered exponential number
$ \Rightarrow \sqrt[3]{{{x^a}}} = {x^{\dfrac{a}{3}}}$
Therefore cube root of an exponent can be taken as the power equals to the division of the given exponent with $3$.
Additional Information:
Physical significance of cube root could be understood by the length of a side of the cube whose volume is equal to the cube of the length of the sides of the cube.
Note: Cube root of a number gives the number which when multiplied by itself two times gives the number whose cube root is taken. Say if the cube root of the number $k$ equals the number $j$ then we can write $j \times j \times j = k$ . Cube and cube root are inverse operations to each other.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE