Answer
Verified
497.4k+ views
Hint: So for ${{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3$ use ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \frac{x+y}{1-xy} \right)$. Simplify it in a simple manner. Try it and you will get the answer.
Complete step-by-step answer:
Trigonometry has its roots in the right triangle. And so, the tangent defines one of the relationships in that right triangle.
The relationship that the tangent defines is the ratio of the opposite side to the adjacent side of a particular angle of the right triangle.
The function $\tan x$ is defined for all real numbers $x$ such that$\cos x\ne 0$since tangent is the quotient of sine over cosine. Thus $\tan x$ is undefined for$x=......,-\frac{3\pi }{2}.....,\frac{\pi }{2},\frac{3\pi }{2}......$
In a right triangle, the tangent of an angle is the length of the opposite side divided by the length of the adjacent side.
Its range is all real numbers, that is, for any number $y$, you can always find a number $x$ such that $y=\tan x$. The period $\tan x$ is $\pi $. This is a departure from$\sin x$ and $\cos x$, which have periods of $2\pi $.
The reason is simple: opposite angles on the unit circle (like$\frac{\pi }{4}$ and $\frac{5\pi }{4}$ ) have the same tangent because of the signs of their sines and cosines.
The function $\tan x$is an odd function, which you should be able to verify on your own. Finally, at the values of $x$ at which $\tan x$ is undefined, $\tan x$ has both left and right vertical asymptotes.
The tangent function, along with sine and cosine, is one of the three most common trigonometric functions. In any right triangle, the tangent of an angle is the length of the opposite side divided by the length of the adjacent side . In a formula, it is written simply as '$\tan $'.
So now we know that,
${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \frac{x+y}{1-xy} \right)$
So we know${{\tan }^{-1}}(1)=\frac{\pi }{4}$.
So we have given ${{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3=\frac{\pi }{4}+{{\tan }^{-1}}2+{{\tan }^{-1}}3$
Now applying the above property we get,
$=\frac{\pi }{4}+{{\tan }^{-1}}\left( \frac{2+3}{1-2\times 3} \right)=\frac{\pi }{4}+{{\tan }^{-1}}\left( -1 \right)$
So we know${{\tan }^{-1}}(-1)=\frac{3\pi }{4}$.
So we get,
$=\frac{\pi }{4}+\frac{3\pi }{4}=\pi $
So we have got the final answer ${{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3=\pi $.
So the correct answer is an option(B).
Note: Carefully read the question. So you should know the identities of $\tan x$.
Most of the students make mistakes in substituting the value ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \frac{x+y}{1-xy} \right)$. So avoid the mistakes.
Complete step-by-step answer:
Trigonometry has its roots in the right triangle. And so, the tangent defines one of the relationships in that right triangle.
The relationship that the tangent defines is the ratio of the opposite side to the adjacent side of a particular angle of the right triangle.
The function $\tan x$ is defined for all real numbers $x$ such that$\cos x\ne 0$since tangent is the quotient of sine over cosine. Thus $\tan x$ is undefined for$x=......,-\frac{3\pi }{2}.....,\frac{\pi }{2},\frac{3\pi }{2}......$
In a right triangle, the tangent of an angle is the length of the opposite side divided by the length of the adjacent side.
Its range is all real numbers, that is, for any number $y$, you can always find a number $x$ such that $y=\tan x$. The period $\tan x$ is $\pi $. This is a departure from$\sin x$ and $\cos x$, which have periods of $2\pi $.
The reason is simple: opposite angles on the unit circle (like$\frac{\pi }{4}$ and $\frac{5\pi }{4}$ ) have the same tangent because of the signs of their sines and cosines.
The function $\tan x$is an odd function, which you should be able to verify on your own. Finally, at the values of $x$ at which $\tan x$ is undefined, $\tan x$ has both left and right vertical asymptotes.
The tangent function, along with sine and cosine, is one of the three most common trigonometric functions. In any right triangle, the tangent of an angle is the length of the opposite side divided by the length of the adjacent side . In a formula, it is written simply as '$\tan $'.
So now we know that,
${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \frac{x+y}{1-xy} \right)$
So we know${{\tan }^{-1}}(1)=\frac{\pi }{4}$.
So we have given ${{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3=\frac{\pi }{4}+{{\tan }^{-1}}2+{{\tan }^{-1}}3$
Now applying the above property we get,
$=\frac{\pi }{4}+{{\tan }^{-1}}\left( \frac{2+3}{1-2\times 3} \right)=\frac{\pi }{4}+{{\tan }^{-1}}\left( -1 \right)$
So we know${{\tan }^{-1}}(-1)=\frac{3\pi }{4}$.
So we get,
$=\frac{\pi }{4}+\frac{3\pi }{4}=\pi $
So we have got the final answer ${{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3=\pi $.
So the correct answer is an option(B).
Note: Carefully read the question. So you should know the identities of $\tan x$.
Most of the students make mistakes in substituting the value ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \frac{x+y}{1-xy} \right)$. So avoid the mistakes.
Recently Updated Pages
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
If p3 qleft 3p 1 right + q2 0 find the relation between class 10 maths CBSE
Solve 3x + 6 + 2x + 3 64 for the value of x class 10 maths CBSE
The mean of 3a + 28122a 1 and 6 is 7 Find the value class 10 maths CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
10 examples of friction in our daily life
What is the range of pH of acid rain A More than 56 class 11 chemistry CBSE
Can anyone list 10 advantages and disadvantages of friction
What is spore formation class 11 biology CBSE