Answer
Verified
495.6k+ views
Hint: We know that the given terms are in G.P. So we will use the formula of the sum of n terms of G.P that is \[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\] and equate it to 120 to get the value of n that is the number of terms.
Here, we are given a series \[3,{{3}^{2}},{{3}^{3}}.....\] such that the sum of the terms is 120. We have to find the number of terms in the given series.
First of all, let us take the total number of terms as n.
We know that in geometric progression (G.P), the terms are as follows:
\[a,ar,a{{r}^{2}},a{{r}^{3}}.....\]
where ‘a’ is the first term and ‘r’ is the common ratio.
Now by substituting a = r = 3 in the above terms, we get the new G.P as,
\[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}......\text{n terms}\]
This is the series given in the question. So now, we know that the series which is given in the question is in G.P.
We know that the sum of n terms of G.P is,
\[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\]
For series, \[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}......\text{n terms}\], we know that a = 3 and r = 3. So, by substituting the value of a and r in the above equation, we get,
\[{{S}_{n}}=\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( 1-3 \right)}\]
We are given the sum of terms of this series is 120. So by substituting \[{{S}_{n}}=120\] in the above equation, we get,
\[120=\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( 1-3 \right)}\]
Or, \[\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( -2 \right)}=120\]
By multiplying \[\left( \dfrac{-2}{3} \right)\] on both the sides of the above equation, we get,
\[\left( \dfrac{-2}{3} \right)\left( \dfrac{3}{-2} \right)\left( 1-{{3}^{n}} \right)=\left( \dfrac{-2}{3} \right)\left( 120 \right)\]
Or, \[\left( 1-{{3}^{n}} \right)=-80\]
Or, \[{{3}^{n}}=80+1\]
\[\Rightarrow {{3}^{n}}=81\]
We can write \[81={{3}^{4}}\]. So, we get,
\[\Rightarrow {{3}^{n}}={{3}^{4}}\]
We know that when \[{{a}^{p}}={{a}^{q}}\] then p = q for all the values of ‘a’ except -1, 0 and 1. By using this in the above equation, we get n = 4.
So our total terms are 4 and that are \[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}\] or 3, 9, 27, 81.
Note: Here students can cross-check their answer as follows:
We are given that the sum of the terms is 120. We have got the terms as 3, 9, 27, 81. So their sum would be 3 + 9 + 27 + 81 = 120. So, our answer is correct.
Here, we are given a series \[3,{{3}^{2}},{{3}^{3}}.....\] such that the sum of the terms is 120. We have to find the number of terms in the given series.
First of all, let us take the total number of terms as n.
We know that in geometric progression (G.P), the terms are as follows:
\[a,ar,a{{r}^{2}},a{{r}^{3}}.....\]
where ‘a’ is the first term and ‘r’ is the common ratio.
Now by substituting a = r = 3 in the above terms, we get the new G.P as,
\[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}......\text{n terms}\]
This is the series given in the question. So now, we know that the series which is given in the question is in G.P.
We know that the sum of n terms of G.P is,
\[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\]
For series, \[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}......\text{n terms}\], we know that a = 3 and r = 3. So, by substituting the value of a and r in the above equation, we get,
\[{{S}_{n}}=\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( 1-3 \right)}\]
We are given the sum of terms of this series is 120. So by substituting \[{{S}_{n}}=120\] in the above equation, we get,
\[120=\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( 1-3 \right)}\]
Or, \[\dfrac{3\left( 1-{{3}^{n}} \right)}{\left( -2 \right)}=120\]
By multiplying \[\left( \dfrac{-2}{3} \right)\] on both the sides of the above equation, we get,
\[\left( \dfrac{-2}{3} \right)\left( \dfrac{3}{-2} \right)\left( 1-{{3}^{n}} \right)=\left( \dfrac{-2}{3} \right)\left( 120 \right)\]
Or, \[\left( 1-{{3}^{n}} \right)=-80\]
Or, \[{{3}^{n}}=80+1\]
\[\Rightarrow {{3}^{n}}=81\]
We can write \[81={{3}^{4}}\]. So, we get,
\[\Rightarrow {{3}^{n}}={{3}^{4}}\]
We know that when \[{{a}^{p}}={{a}^{q}}\] then p = q for all the values of ‘a’ except -1, 0 and 1. By using this in the above equation, we get n = 4.
So our total terms are 4 and that are \[3,{{3}^{2}},{{3}^{3}},{{3}^{4}}\] or 3, 9, 27, 81.
Note: Here students can cross-check their answer as follows:
We are given that the sum of the terms is 120. We have got the terms as 3, 9, 27, 81. So their sum would be 3 + 9 + 27 + 81 = 120. So, our answer is correct.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers