
The angle of depression of the top and the bottom of a building 50m high are observed from the top of a tower are \[30^\circ \] and \[60^\circ \] respectively. Find the height of the tower and also the horizontal distance between the building and the tower.
Answer
428k+ views
Hint: Draw the diagram of the given problem statement for a better understanding of the situation. Use the trigonometric ratios, that are $\sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}}$ and $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$ in the physical triangle formed to find the height of the tower and horizontal distance between the building and the tower.
Complete step by step answer:
Since it is given that the angle observed from the top of the tower to the top and bottom of the building are \[30^\circ \] and \[60^\circ \]respectively, we can draw a diagram representing the condition.

In the diagram, A represents the top of the tower, AB represents the height of the tower, DC represents the building of height 50 metres.
It is given in the question that the angle $\angle TAD$ is \[30^\circ \] and the angle $\angle TAC$ is \[60^\circ \].
By the property of the corresponding angles of the parallel lines, we can say that the angle $\angle ADE$is \[30^\circ \] and the angle $\angle ACB$ is \[60^\circ \].
In the triangle $ADE$, we can say
\[\tan {30^ \circ } = \dfrac{{{\text{AE}}}}{{DE}}\]
On further simplifying
$
\dfrac{1}{{\sqrt 3 }} = \dfrac{{{\text{AE}}}}{{DE}} \\
\sqrt 3 {\text{AE = DE}} \\
$
Similarly, in the triangle ${\text{ACB}}$
\[\tan {60^ \circ } = \dfrac{{{\text{AB}}}}{{{\text{BC}}}}\]
On further simplifying
$
\sqrt 3 = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} \\
\sqrt 3 {\text{BC = AB}} \\
$
From the figure we infer that,
${\text{BC = DE}}$
$
{\text{AB = AE + EB}} \\
{\text{EB = CD = 50}} \\
{\text{AB = AE + 50}} \\
$
Substituting the value ${\text{AE + 50}}$ for ${\text{AB}}$ and ${\text{DE}}$ for ${\text{BC}}$ in the equation \[\sqrt 3 {\text{BC = AB}}\], we get
\[\sqrt 3 {\text{DE = AE + 50}}\]
Also, \[\sqrt 3 {\text{AE = DE}}\]
Thus the expression becomes \[\sqrt 3 \left( {\sqrt 3 {\text{AE}}} \right){\text{ = AE + 50}}\]
We can solve the expression to find the value of ${\text{AE}}$
$
3{\text{AE = AE + 50}} \\
{\text{2AE = 50}} \\
{\text{AE = 25}} \\
$
Substituting the value 25 for ${\text{AE}}$ in the equation ${\text{AB = AE + 50}}$ to find the height of the tower, and in the equation \[\sqrt 3 {\text{AE = DE}}\] to find the horizontal distance between the building and the tower.
$
{\text{AB = 25 + 50}} \\
{\text{AB = 75}} \\
$
\[{\text{DE}} = \sqrt 3 \left( {25} \right)\]
Thus the height of the tower is 75 m, and the horizontal distance between the building and the tower is $25\sqrt 3 $m.
Note: In a right angled triangle, the $\tan \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$, where perpendicular is the side opposite to the angle $\theta $, and $\sin \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$, where perpendicular is the side opposite to the angle $\theta $.
Complete step by step answer:
Since it is given that the angle observed from the top of the tower to the top and bottom of the building are \[30^\circ \] and \[60^\circ \]respectively, we can draw a diagram representing the condition.

In the diagram, A represents the top of the tower, AB represents the height of the tower, DC represents the building of height 50 metres.
It is given in the question that the angle $\angle TAD$ is \[30^\circ \] and the angle $\angle TAC$ is \[60^\circ \].
By the property of the corresponding angles of the parallel lines, we can say that the angle $\angle ADE$is \[30^\circ \] and the angle $\angle ACB$ is \[60^\circ \].
In the triangle $ADE$, we can say
\[\tan {30^ \circ } = \dfrac{{{\text{AE}}}}{{DE}}\]
On further simplifying
$
\dfrac{1}{{\sqrt 3 }} = \dfrac{{{\text{AE}}}}{{DE}} \\
\sqrt 3 {\text{AE = DE}} \\
$
Similarly, in the triangle ${\text{ACB}}$
\[\tan {60^ \circ } = \dfrac{{{\text{AB}}}}{{{\text{BC}}}}\]
On further simplifying
$
\sqrt 3 = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} \\
\sqrt 3 {\text{BC = AB}} \\
$
From the figure we infer that,
${\text{BC = DE}}$
$
{\text{AB = AE + EB}} \\
{\text{EB = CD = 50}} \\
{\text{AB = AE + 50}} \\
$
Substituting the value ${\text{AE + 50}}$ for ${\text{AB}}$ and ${\text{DE}}$ for ${\text{BC}}$ in the equation \[\sqrt 3 {\text{BC = AB}}\], we get
\[\sqrt 3 {\text{DE = AE + 50}}\]
Also, \[\sqrt 3 {\text{AE = DE}}\]
Thus the expression becomes \[\sqrt 3 \left( {\sqrt 3 {\text{AE}}} \right){\text{ = AE + 50}}\]
We can solve the expression to find the value of ${\text{AE}}$
$
3{\text{AE = AE + 50}} \\
{\text{2AE = 50}} \\
{\text{AE = 25}} \\
$
Substituting the value 25 for ${\text{AE}}$ in the equation ${\text{AB = AE + 50}}$ to find the height of the tower, and in the equation \[\sqrt 3 {\text{AE = DE}}\] to find the horizontal distance between the building and the tower.
$
{\text{AB = 25 + 50}} \\
{\text{AB = 75}} \\
$
\[{\text{DE}} = \sqrt 3 \left( {25} \right)\]
Thus the height of the tower is 75 m, and the horizontal distance between the building and the tower is $25\sqrt 3 $m.
Note: In a right angled triangle, the $\tan \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$, where perpendicular is the side opposite to the angle $\theta $, and $\sin \theta $ is the equal to $\dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$, where perpendicular is the side opposite to the angle $\theta $.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

If 81 is the discriminant of 2x2 + 5x k 0 then the class 10 maths JEE_Main

The probability of guessing the correct answer to a class 10 maths JEE_Main

A man on tour travels first 160 km at 64 kmhr and -class-10-maths-JEE_Main

In a family each daughter has the same number of brothers class 10 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Salt Bridge

Other Pages
Maths Question Paper for CBSE Class 10 - 2007

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Areas Related to Circles Class 10 Notes CBSE Maths Chapter 11 (Free PDF Download)

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF
