Answer
Verified
438.3k+ views
Hint: -First of all, we have to use the formula of calculating the total strength of the field to find the vertical component using the horizontal component and total strength.
The angle of dip is the angle that is made by the earth’s magnetic field lines with the horizontal.
Complete Step by Step Solution: -
Let the horizontal component be $H$, vertical component be $V$ and total strength be $B$
According to the question, it is given that –
Horizontal component, $\therefore H = 0.3G$
where, $G$ stands for Gauss
Total strength of the field, $\therefore B = 0.5G$
Now, we have to find the vertical component, so we will use the relationship between the total strength of the field, horizontal component and vertical component which is –
$\therefore {B^2} = {H^2} + {V^2}$
The above equation can also be made as –
$
{V^2} = {B^2} - {H^2} \\
\Rightarrow V = \sqrt {{B^2} - {H^2}} \cdots \left( 1 \right) \\
$
Putting the value of total strength of the field and horizontal component in the equation $\left( 1 \right)$ -
$
V = \sqrt {{{\left( {0.5} \right)}^2} - {{\left( {0.3} \right)}^2}} \\
\Rightarrow V = \sqrt {0.25 - 0.09} \\
\Rightarrow V = \sqrt {0.16} \\
\therefore V = 0.4G \\
$
Hence, we got the value of the vertical component which is $0.4Gauss$.
Now, we have to find the angle of dip
We know that, angle of dip can be defined as the angle that is made by the earth’s magnetic field lines with the horizontal. It is denoted by $\phi $. The formula for calculating angle of dip is –
\[\tan \phi = \dfrac{V}{H}\]
Putting the values of vertical component and horizontal component in the above formula for calculating the angle of dip –
\[
\therefore \tan \phi = \dfrac{{0.4}}{{0.3}} = \dfrac{4}{3} \\
\Rightarrow \phi = {\tan ^{ - 1}}\left( {\dfrac{4}{3}} \right) \\
\]
Hence, the value of angle of dip is ${\tan ^{ - 1}}\dfrac{4}{3}$.
So, the correct option is (C).
Note: -At the equator, magnetic lines of forces are perfectly horizontal such that even the magnetic needle is also horizontal at the equator. So, the angle of dip at the equator is zero.
The angle of dip is the angle that is made by the earth’s magnetic field lines with the horizontal.
Complete Step by Step Solution: -
Let the horizontal component be $H$, vertical component be $V$ and total strength be $B$
According to the question, it is given that –
Horizontal component, $\therefore H = 0.3G$
where, $G$ stands for Gauss
Total strength of the field, $\therefore B = 0.5G$
Now, we have to find the vertical component, so we will use the relationship between the total strength of the field, horizontal component and vertical component which is –
$\therefore {B^2} = {H^2} + {V^2}$
The above equation can also be made as –
$
{V^2} = {B^2} - {H^2} \\
\Rightarrow V = \sqrt {{B^2} - {H^2}} \cdots \left( 1 \right) \\
$
Putting the value of total strength of the field and horizontal component in the equation $\left( 1 \right)$ -
$
V = \sqrt {{{\left( {0.5} \right)}^2} - {{\left( {0.3} \right)}^2}} \\
\Rightarrow V = \sqrt {0.25 - 0.09} \\
\Rightarrow V = \sqrt {0.16} \\
\therefore V = 0.4G \\
$
Hence, we got the value of the vertical component which is $0.4Gauss$.
Now, we have to find the angle of dip
We know that, angle of dip can be defined as the angle that is made by the earth’s magnetic field lines with the horizontal. It is denoted by $\phi $. The formula for calculating angle of dip is –
\[\tan \phi = \dfrac{V}{H}\]
Putting the values of vertical component and horizontal component in the above formula for calculating the angle of dip –
\[
\therefore \tan \phi = \dfrac{{0.4}}{{0.3}} = \dfrac{4}{3} \\
\Rightarrow \phi = {\tan ^{ - 1}}\left( {\dfrac{4}{3}} \right) \\
\]
Hence, the value of angle of dip is ${\tan ^{ - 1}}\dfrac{4}{3}$.
So, the correct option is (C).
Note: -At the equator, magnetic lines of forces are perfectly horizontal such that even the magnetic needle is also horizontal at the equator. So, the angle of dip at the equator is zero.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE