Answer
Verified
468.6k+ views
Hint: We will first draw the figure of the given condition and then we will use the formula of $\tan \theta = \dfrac{{perpendicular}}{{base}}$ in both the given angles of tan using the formula of tan(a+b) = $\dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$ and then from the obtained two equations, we will determine the value of height.
Complete step-by-step answer:
We are given the angle of elevation of an electric pole from a point A from the ground is given as 60° .
Also, the angle of elevation made by point B from the line joining the foot of the pole is 75°.
We are given the distance between the points A and B is AB = a.
Let us draw the figure:
let us assume that distance BC = x
hence, in triangle BCP, $\tan 75^\circ = \dfrac{h}{b}$
Now, tan 75° can be written as $\tan (45^\circ + 30^\circ )$
We can further solve it as $\tan (45^\circ + 30^\circ ) = \dfrac{{\tan 45^\circ + \tan 30^\circ }}{{1 - \tan 45^\circ \tan 30^\circ }}$ using the formula tan (a + b) = $\dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$.
$
\Rightarrow \tan ({45^ \circ } + {30^ \circ }) = \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - 1(\dfrac{1}{{\sqrt 3 }})}} \\
\Rightarrow \tan {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} = \dfrac{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 + 1} \right)}}{{3 - 1}} = \dfrac{{3 + 1 + 2\sqrt 3 }}{2} = \dfrac{{2\left( {2 + \sqrt 3 } \right)}}{2} = \left( {2 + \sqrt 3 } \right) \\
$
Therefore, tan75$^ \circ $= $\dfrac{h}{b} = \left( {2 + \sqrt 3 } \right)$
$ \Rightarrow b = \dfrac{h}{{2 + \sqrt 3 }}$
Now, in triangle ACP, tan 60$^ \circ $= $\dfrac{h}{{a + b}}$
Substituting the values of b and tan 60$^ \circ $, we get
$
\Rightarrow \sqrt 3 = \dfrac{h}{{a + b}} \\
\Rightarrow h = \sqrt 3 \left( {a + b} \right) \\
\Rightarrow h = \sqrt 3 \left( {a + \dfrac{h}{{2 + \sqrt 3 }}} \right) \\
\Rightarrow h - \dfrac{{h\sqrt 3 }}{{2 + \sqrt 3 }} = a\sqrt 3 \\
\Rightarrow h\left( {\dfrac{{2 + \sqrt 3 - \sqrt 3 }}{{2 + \sqrt 3 }}} \right) = a\sqrt 3 \\
$
Simplifying it further for the value of h, we get
$\therefore h = \dfrac{{a\left( {3 + 2\sqrt 3 } \right)}}{2}$
Therefore, the height of the pole h is found to be $\dfrac{{a\left( {3 + 2\sqrt 3 } \right)}}{2}$
Note: You should not get confused while calculating the tan75$^ \circ $with tan45$^ \circ $+ tan30$^ \circ $ instead of tan(45$^ \circ $+ tan30$^ \circ $). Be careful while simplifying for h because there are further calculations based on h value. If h value is wrong the final answer will come wrong.
Complete step-by-step answer:
We are given the angle of elevation of an electric pole from a point A from the ground is given as 60° .
Also, the angle of elevation made by point B from the line joining the foot of the pole is 75°.
We are given the distance between the points A and B is AB = a.
Let us draw the figure:
let us assume that distance BC = x
hence, in triangle BCP, $\tan 75^\circ = \dfrac{h}{b}$
Now, tan 75° can be written as $\tan (45^\circ + 30^\circ )$
We can further solve it as $\tan (45^\circ + 30^\circ ) = \dfrac{{\tan 45^\circ + \tan 30^\circ }}{{1 - \tan 45^\circ \tan 30^\circ }}$ using the formula tan (a + b) = $\dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$.
$
\Rightarrow \tan ({45^ \circ } + {30^ \circ }) = \dfrac{{1 + \dfrac{1}{{\sqrt 3 }}}}{{1 - 1(\dfrac{1}{{\sqrt 3 }})}} \\
\Rightarrow \tan {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}} = \dfrac{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 + 1} \right)}}{{3 - 1}} = \dfrac{{3 + 1 + 2\sqrt 3 }}{2} = \dfrac{{2\left( {2 + \sqrt 3 } \right)}}{2} = \left( {2 + \sqrt 3 } \right) \\
$
Therefore, tan75$^ \circ $= $\dfrac{h}{b} = \left( {2 + \sqrt 3 } \right)$
$ \Rightarrow b = \dfrac{h}{{2 + \sqrt 3 }}$
Now, in triangle ACP, tan 60$^ \circ $= $\dfrac{h}{{a + b}}$
Substituting the values of b and tan 60$^ \circ $, we get
$
\Rightarrow \sqrt 3 = \dfrac{h}{{a + b}} \\
\Rightarrow h = \sqrt 3 \left( {a + b} \right) \\
\Rightarrow h = \sqrt 3 \left( {a + \dfrac{h}{{2 + \sqrt 3 }}} \right) \\
\Rightarrow h - \dfrac{{h\sqrt 3 }}{{2 + \sqrt 3 }} = a\sqrt 3 \\
\Rightarrow h\left( {\dfrac{{2 + \sqrt 3 - \sqrt 3 }}{{2 + \sqrt 3 }}} \right) = a\sqrt 3 \\
$
Simplifying it further for the value of h, we get
$\therefore h = \dfrac{{a\left( {3 + 2\sqrt 3 } \right)}}{2}$
Therefore, the height of the pole h is found to be $\dfrac{{a\left( {3 + 2\sqrt 3 } \right)}}{2}$
Note: You should not get confused while calculating the tan75$^ \circ $with tan45$^ \circ $+ tan30$^ \circ $ instead of tan(45$^ \circ $+ tan30$^ \circ $). Be careful while simplifying for h because there are further calculations based on h value. If h value is wrong the final answer will come wrong.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE