Answer
Verified
498.6k+ views
Hint: An arithmetic progression is a sequence of numbers such that the difference between consecutive terms is constant. We know that the sum of interior angles of any quadrilateral is ${{360}^{\circ }}$ .
Complete step-by-step answer:
Here, we have a quadrilateral whose angles are in A.P with common difference ${{10}^{\circ }}$ and need to determine all angles of it.
Now, we can define any A.P as a sequence of numbers such that the difference between consecutive terms is constant. Successive difference is termed as common difference and whole sequence is called as an Arithmetic progression.
So, let us suppose angles of quadrilateral are
a-3d, a-d, a+d, a+3d
Where the common difference between terms is 2d i.e., (a-d – a+3d = 2d).
As, it is already given that the common difference in angles is ${{10}^{\circ }}$.
Hence, 2d should be equal to ${{10}^{\circ }}.$
2d = 10 or
$d={{5}^{\circ }}.............\left( i \right)$
Hence, now angles can be given as
a-3(5), a-5, a+5, a+3(5) or
a-15, a-5, a+5, a+15
Now, we can use the property of any quadrilateral that is given as “Sum of all interior angles of any quadrilateral is ${{360}^{\circ }}$”.
Hence,
$\begin{align}
& a-15+a-5+a+5+a+15={{360}^{\circ }} \\
& 4a={{360}^{\circ }} \\
& a={{90}^{\circ }}...............(ii) \\
\end{align}$
So, we can evaluate all angles of quadrilateral as
a-3d, a-d, a+d, a+3d
Putting values of a and d, we get
90-3(5), 90-5, 90+5, 90+5(3)
90-15, 85, 95, 90+15
or
${{75}^{\circ }},{{85}^{\circ }},{{95}^{\circ }},{{105}^{\circ }}$
Hence, angles of quadrilateral is given as ${{75}^{\circ }},{{85}^{\circ }},{{95}^{\circ }},{{105}^{\circ }}.$
Note: One can suppose angles of quadrilateral as a, a+d, a+2d, a+3d which is the general representation of an A.P. And use $d={{10}^{\circ }}$ and apply the same property for quadrilateral used in the solution. We have used another representation of angles for simplicity as if we add all terms of AP taken in solution, we get 4a. So, we can get the value of ‘a’ directly.One can equate summation of all angles to ${{180}^{\circ }}$ by mistake as we use for sum of angles in a triangle. Hence, take care of it as well. Terms used in the solution have the common difference ‘2d’. So, don’t take the value of ‘d’ as ${{10}^{\circ }}$ as given in the problem. ‘2d’ should be equal to ${{10}^{\circ }}.$
Complete step-by-step answer:
Here, we have a quadrilateral whose angles are in A.P with common difference ${{10}^{\circ }}$ and need to determine all angles of it.
Now, we can define any A.P as a sequence of numbers such that the difference between consecutive terms is constant. Successive difference is termed as common difference and whole sequence is called as an Arithmetic progression.
So, let us suppose angles of quadrilateral are
a-3d, a-d, a+d, a+3d
Where the common difference between terms is 2d i.e., (a-d – a+3d = 2d).
As, it is already given that the common difference in angles is ${{10}^{\circ }}$.
Hence, 2d should be equal to ${{10}^{\circ }}.$
2d = 10 or
$d={{5}^{\circ }}.............\left( i \right)$
Hence, now angles can be given as
a-3(5), a-5, a+5, a+3(5) or
a-15, a-5, a+5, a+15
Now, we can use the property of any quadrilateral that is given as “Sum of all interior angles of any quadrilateral is ${{360}^{\circ }}$”.
Hence,
$\begin{align}
& a-15+a-5+a+5+a+15={{360}^{\circ }} \\
& 4a={{360}^{\circ }} \\
& a={{90}^{\circ }}...............(ii) \\
\end{align}$
So, we can evaluate all angles of quadrilateral as
a-3d, a-d, a+d, a+3d
Putting values of a and d, we get
90-3(5), 90-5, 90+5, 90+5(3)
90-15, 85, 95, 90+15
or
${{75}^{\circ }},{{85}^{\circ }},{{95}^{\circ }},{{105}^{\circ }}$
Hence, angles of quadrilateral is given as ${{75}^{\circ }},{{85}^{\circ }},{{95}^{\circ }},{{105}^{\circ }}.$
Note: One can suppose angles of quadrilateral as a, a+d, a+2d, a+3d which is the general representation of an A.P. And use $d={{10}^{\circ }}$ and apply the same property for quadrilateral used in the solution. We have used another representation of angles for simplicity as if we add all terms of AP taken in solution, we get 4a. So, we can get the value of ‘a’ directly.One can equate summation of all angles to ${{180}^{\circ }}$ by mistake as we use for sum of angles in a triangle. Hence, take care of it as well. Terms used in the solution have the common difference ‘2d’. So, don’t take the value of ‘d’ as ${{10}^{\circ }}$ as given in the problem. ‘2d’ should be equal to ${{10}^{\circ }}.$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE