
The angular momentum and the moment of the inertia are respectively:
A. Vector and tensor quantities.
B. Scalar and vector quantities
C. Vector and scalar quantities
D. Vector and vector quantities
Answer
592.8k+ views
Hint: Angular momentum of a particle is the cross product of its position vector and its linear momentum. Moment of inertia of the particle is the product of the particle’s mass and its perpendicular distance from the axis of rotation.
Complete step by step answer:
Let us first understand what the angular momentum and the moment of inertia are.
When a particle is in a rotational motion, we define its angular momentum and moment of inertia.
Suppose a particle of mass m is rotating about a fixed axis. The angular momentum of the particle is defined as the cross product of its position vector ($\overrightarrow{r}$) and its linear momentum ($\overrightarrow{p}$). The resultant vector of a cross product of two vectors is always a vector. Therefore, angular momentum is a vector quantity.
The value of angular momentum is given as $\overrightarrow{L}=\overrightarrow{r}\times \overrightarrow{p}$ .
The moment of inertia of the particle is defined as the product of its mass and the square of the perpendicular distance of the particle from the fixed axis of rotation.
The value of moment of inertia of a particle of mass m, which is at a perpendicular distance of d from the fixed axis of rotation is given as $I=m{{d}^{2}}$.
Moment of inertia is only a magnitude and has no specific direction. Therefore, it is a scalar quantity.
Therefore, the angular momentum and the moment of the inertia are vector and scalar quantities respectively.
So, the correct answer is “Option C”.
Note: When we deal with angular momentum and moment of inertia of a particle, the most important thing is the axis about which we are measuring both quantities.
Angular momentum and moment of inertia are always measured about an axis.
Without the axis, both the quantities do not have any meaning.
Complete step by step answer:
Let us first understand what the angular momentum and the moment of inertia are.
When a particle is in a rotational motion, we define its angular momentum and moment of inertia.
Suppose a particle of mass m is rotating about a fixed axis. The angular momentum of the particle is defined as the cross product of its position vector ($\overrightarrow{r}$) and its linear momentum ($\overrightarrow{p}$). The resultant vector of a cross product of two vectors is always a vector. Therefore, angular momentum is a vector quantity.
The value of angular momentum is given as $\overrightarrow{L}=\overrightarrow{r}\times \overrightarrow{p}$ .
The moment of inertia of the particle is defined as the product of its mass and the square of the perpendicular distance of the particle from the fixed axis of rotation.
The value of moment of inertia of a particle of mass m, which is at a perpendicular distance of d from the fixed axis of rotation is given as $I=m{{d}^{2}}$.
Moment of inertia is only a magnitude and has no specific direction. Therefore, it is a scalar quantity.
Therefore, the angular momentum and the moment of the inertia are vector and scalar quantities respectively.
So, the correct answer is “Option C”.
Note: When we deal with angular momentum and moment of inertia of a particle, the most important thing is the axis about which we are measuring both quantities.
Angular momentum and moment of inertia are always measured about an axis.
Without the axis, both the quantities do not have any meaning.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

