
The angular spread of central maximum, in diffraction pattern, does not depend on _____________
A) The distance between the slit and the source
B) Width of the slit
C) Wavelength of light
D) Frequency of light
Answer
503.7k+ views
Hint: This problem can be solved by writing the formula for the path difference for the central maximum in single slit diffraction and then obtaining the formula for the angular width of the central maximum for it. Upon analysis of this formula, we can check upon which factor the angular width does not depend upon.
Formula used:
Complete step-by-step answer:
Let us try to get the mathematical formula for the angular width of the central maximum in single slit diffraction.
The path difference for a point on the screen in single slit diffraction is
--(1)
Where is the width of the slit and is the angle made by the line joining the centre of the slit to the point on the screen to the perpendicular from the plane of the slit towards the screen.
Also, the path difference for the central maxima is
--(2)
where is the wavelength of light used.
Comparing (1) and (2), we get,
--(3)
Now, as is clear from the figure, the central maximum is symmetric on both sides of the central axis. Hence, the angular width of the central maximum will be . Therefore, using (3), we get,
--(4)
Hence, we can see that the angular width of the central maximum does not depend on the distance between the slit and the source. Hence, the correct option is A) The distance between the slit and the source.
Note: Students might be tempted to think that the frequency of the light can also be the correct answer in this question as it has no mention in equation (4). However, they must remember that the wavelength and frequency of light are related to each other as their product is a constant (the speed of light) and hence, frequency is inversely proportional to the wavelength of light. Therefore, the angular width of the central maximum depends upon the frequency of the light (since it depends upon the wavelength).
Formula used:
Complete step-by-step answer:
Let us try to get the mathematical formula for the angular width of the central maximum in single slit diffraction.
The path difference
Where

Also, the path difference
where
Comparing (1) and (2), we get,
Now, as is clear from the figure, the central maximum is symmetric on both sides of the central axis. Hence, the angular width
Hence, we can see that the angular width of the central maximum does not depend on the distance between the slit and the source. Hence, the correct option is A) The distance between the slit and the source.
Note: Students might be tempted to think that the frequency of the light can also be the correct answer in this question as it has no mention in equation (4). However, they must remember that the wavelength and frequency of light are related to each other as their product is a constant (the speed of light) and hence, frequency is inversely proportional to the wavelength of light. Therefore, the angular width of the central maximum depends upon the frequency of the light (since it depends upon the wavelength).
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE

Franz thinks Will they make them sing in German even class 12 english CBSE
