Answer
Verified
441.6k+ views
Hint: The area between two curves can be found using definite integral. Since the curves are expressed in terms of $y =
f(x)$, we can integrate with respect to $x$. No specific interval is given. So we can take the unit interval $(0,1)$.
Formula used: If we have two curves $y = f(x)$ and $y = g(x)$ such that $f(x) > g(x)$ then the area between them bounded by the horizontal lines $x = a,x = b$ is given by
$A = \int\limits_a^b {(f(x) - g(x))dx} $
Complete step-by-step solution:
We are given the curves ${y^2} = x$ and $y = |x|$.
We have to find the area enclosed between them.
We can rewrite them as follows.
${y^2} = x \Rightarrow y = \sqrt x $
And we have,
$|x|$ takes the value $x$ for $x > 0$ and $ - x$ for $x < 0$.
To find the area between the curves,
Consider the interval $(0,1)$.
If we have two curves $y = f(x)$ and $y = g(x)$ such that $f(x) > g(x)$ then the area between them bounded by the
horizontal lines $x = a,x = b$ is given by
$A = \int\limits_a^b {(f(x) - g(x))dx} $
So let $f(x) = \sqrt x $ and $g(x) = |x|$.
In the interval $(0,1)$, we have $\sqrt x > |x| = x$
So substituting we get the area as,
$\Rightarrow$$A = \int\limits_0^1 {(\sqrt x - x)dx} $
This gives,
$\Rightarrow$$A = \int\limits_0^1 {({x^{\dfrac{1}{2}}} - x)dx} $
We know that $\int\limits_0^1 {{x^n}dx} = [\dfrac{{{x^{n + 1}}}}{{n + 1}}]_0^1$
We get,
$\Rightarrow$$A = [\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} - \dfrac{{{x^2}}}{2}]_0^1$
Simplifying we have,
$\Rightarrow$$A = [\dfrac{{2{x^{\dfrac{3}{2}}}}}{3} - \dfrac{{{x^2}}}{2}]_0^1$
Substituting the limits we get,
$\Rightarrow$$A = [\dfrac{{2 \times {1^{\dfrac{3}{2}}}}}{3} - \dfrac{{{1^2}}}{2} - (\dfrac{{2 \times {0^{\dfrac{3}{2}}}}}{3} -\dfrac{{{0^2}}}{2})]$
Simplifying we get,
$\Rightarrow$$A = [\dfrac{2}{3} - \dfrac{1}{2} - (0 - 0)]$
$ \Rightarrow A = \dfrac{{4 - 3}}{6}$
So we get,
$\Rightarrow$$A = \dfrac{1}{6}$
That is the area enclosed between the two curves is $\dfrac{1}{6}$.
Therefore the answer is option D.
Note: We took the value of $|x|$ as $x$ since the values are positive in the unit interval. Also, we have for positive numbers less than one, its root exceeds the number. So, we get the function $f(x)$ greater than the function $g(x)$. If in the question any interval is specified, we have to change the range of $x$.
f(x)$, we can integrate with respect to $x$. No specific interval is given. So we can take the unit interval $(0,1)$.
Formula used: If we have two curves $y = f(x)$ and $y = g(x)$ such that $f(x) > g(x)$ then the area between them bounded by the horizontal lines $x = a,x = b$ is given by
$A = \int\limits_a^b {(f(x) - g(x))dx} $
Complete step-by-step solution:
We are given the curves ${y^2} = x$ and $y = |x|$.
We have to find the area enclosed between them.
We can rewrite them as follows.
${y^2} = x \Rightarrow y = \sqrt x $
And we have,
$|x|$ takes the value $x$ for $x > 0$ and $ - x$ for $x < 0$.
To find the area between the curves,
Consider the interval $(0,1)$.
If we have two curves $y = f(x)$ and $y = g(x)$ such that $f(x) > g(x)$ then the area between them bounded by the
horizontal lines $x = a,x = b$ is given by
$A = \int\limits_a^b {(f(x) - g(x))dx} $
So let $f(x) = \sqrt x $ and $g(x) = |x|$.
In the interval $(0,1)$, we have $\sqrt x > |x| = x$
So substituting we get the area as,
$\Rightarrow$$A = \int\limits_0^1 {(\sqrt x - x)dx} $
This gives,
$\Rightarrow$$A = \int\limits_0^1 {({x^{\dfrac{1}{2}}} - x)dx} $
We know that $\int\limits_0^1 {{x^n}dx} = [\dfrac{{{x^{n + 1}}}}{{n + 1}}]_0^1$
We get,
$\Rightarrow$$A = [\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} - \dfrac{{{x^2}}}{2}]_0^1$
Simplifying we have,
$\Rightarrow$$A = [\dfrac{{2{x^{\dfrac{3}{2}}}}}{3} - \dfrac{{{x^2}}}{2}]_0^1$
Substituting the limits we get,
$\Rightarrow$$A = [\dfrac{{2 \times {1^{\dfrac{3}{2}}}}}{3} - \dfrac{{{1^2}}}{2} - (\dfrac{{2 \times {0^{\dfrac{3}{2}}}}}{3} -\dfrac{{{0^2}}}{2})]$
Simplifying we get,
$\Rightarrow$$A = [\dfrac{2}{3} - \dfrac{1}{2} - (0 - 0)]$
$ \Rightarrow A = \dfrac{{4 - 3}}{6}$
So we get,
$\Rightarrow$$A = \dfrac{1}{6}$
That is the area enclosed between the two curves is $\dfrac{1}{6}$.
Therefore the answer is option D.
Note: We took the value of $|x|$ as $x$ since the values are positive in the unit interval. Also, we have for positive numbers less than one, its root exceeds the number. So, we get the function $f(x)$ greater than the function $g(x)$. If in the question any interval is specified, we have to change the range of $x$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers