Answer
Verified
446.4k+ views
Hint: We know that integrating a curve in an x-y plane within the prescribed limits of x can give us the area under that curve. An integration can sum up the small area elements over the given limits to provide the final resultant area.
Complete step by step answer:
The force acting on the system is constant, for example, when a force of gravity and friction moves with the constant speed, therefore the force-displacement graph is just a horizontal line because force can’t change.
In this case, the area under the graph is triangular, with base length (S) that is displacement height (H). So, the area of the triangle is 0.5×base×height.
Now here in the above figure, the area under the line that is blue represents the work done by force.
Since we can say that force is a function of x, let’s say F(x) then the work is given by,
Here W is the work done, and dx is the differential distance, and when we integrate the sum of F(x)dx continually with integration, then we will get the required work done. Here 0 to x is the range of displacement within which the work is calculated.
From this formula, we calculate the mechanical work done by a constant force.
We can also use this method to calculate the work done when an object accelerates from rest to final speed (v), using a constant force F. For a constant acceleration from rest, the distance travelled can be written in terms of the average rate (Vav)
$\therefore {\rm{S = }}{{\rm{V}}_{{\rm{av}}}} \times {\rm{t = }}\dfrac{{{\rm{Vt}}}}{2}$
And the acceleration (a) becomes,
${\rm{a = }}\dfrac{{\rm{v}}}{{\rm{t}}}$ (Here v is velocity and t is time.)
So, the work is done, ${\rm{W = F}}{\rm{.S}}$
$ \Rightarrow {\rm{W = m}} \times {\rm{a}} \times {\rm{S = m}} \times \dfrac{{\rm{v}}}{{\rm{t}}} \times \dfrac{{{\rm{vt}}}}{2} = \dfrac{1}{2}{\rm{m}}{{\rm{v}}^2}$
So the work is done, when objects accelerate to a constant speed from rest is equal to the energy stored as kinetic energy by the conservation of energy.
Note: When we talk about the graph of force-displacement, it means the force is a function of some displacement. Therefore the nature of the graph and its slope will depend upon the nature of the function. No work is done along the direction of the motion if the force is perpendicular.
Complete step by step answer:
The force acting on the system is constant, for example, when a force of gravity and friction moves with the constant speed, therefore the force-displacement graph is just a horizontal line because force can’t change.
In this case, the area under the graph is triangular, with base length (S) that is displacement height (H). So, the area of the triangle is 0.5×base×height.
Now here in the above figure, the area under the line that is blue represents the work done by force.
Since we can say that force is a function of x, let’s say F(x) then the work is given by,
Here W is the work done, and dx is the differential distance, and when we integrate the sum of F(x)dx continually with integration, then we will get the required work done. Here 0 to x is the range of displacement within which the work is calculated.
From this formula, we calculate the mechanical work done by a constant force.
We can also use this method to calculate the work done when an object accelerates from rest to final speed (v), using a constant force F. For a constant acceleration from rest, the distance travelled can be written in terms of the average rate (Vav)
$\therefore {\rm{S = }}{{\rm{V}}_{{\rm{av}}}} \times {\rm{t = }}\dfrac{{{\rm{Vt}}}}{2}$
And the acceleration (a) becomes,
${\rm{a = }}\dfrac{{\rm{v}}}{{\rm{t}}}$ (Here v is velocity and t is time.)
So, the work is done, ${\rm{W = F}}{\rm{.S}}$
$ \Rightarrow {\rm{W = m}} \times {\rm{a}} \times {\rm{S = m}} \times \dfrac{{\rm{v}}}{{\rm{t}}} \times \dfrac{{{\rm{vt}}}}{2} = \dfrac{1}{2}{\rm{m}}{{\rm{v}}^2}$
So the work is done, when objects accelerate to a constant speed from rest is equal to the energy stored as kinetic energy by the conservation of energy.
Note: When we talk about the graph of force-displacement, it means the force is a function of some displacement. Therefore the nature of the graph and its slope will depend upon the nature of the function. No work is done along the direction of the motion if the force is perpendicular.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What percentage of the solar systems mass is found class 8 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE