The \[\arg \left( { - \dfrac{3}{2}} \right)\] equals
A. \[\dfrac{\pi }{2}\]
B. \[ - \dfrac{\pi }{2}\]
C.0
D. \[\pi \]
Answer
Verified
410.4k+ views
Hint: Here in this question, we have to find the angle of the complex number using a given argument number. As we know the complex number is defined as \[z = x + iy\] , where \[x = r\cos \theta \] , \[y = r\sin \theta \] and \[i\] be the imaginary number by giving the value of r to the polar form of complex number \[z = r\left( {\cos \theta + i\sin \theta } \right)\] using a given argument number we get the angle \[\theta \] .
Complete step-by-step answer:
The argument of a complex number is defined as the angle inclined from the real axis in the direction of the complex number represented on the complex plane. It is denoted by “ \[\theta \] ”. It is measured in the standard unit called “radians”.
In polar form, a complex number is represented by the equation \[z = r\left( {\cos \theta + i\sin \theta } \right)\] , here, \[\theta \] is the argument. The argument function is denoted by \[\arg \left( z \right)\] , where z denotes the complex number, i.e., \[z = x + iy\] . The computation of the complex argument can be done by using the following formula:
i.e., \[\arg \left( z \right) = \theta \]
Therefore, the argument θ is represented as: \[\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\]
Now, consider the given question
\[ \Rightarrow \,\,\arg \left( z \right) = \arg \left( { - \dfrac{3}{2}} \right)\]
by
Where, z is the complex number i.e., \[z = x + iy\] , then
\[ \Rightarrow \,\,\arg \left( {x + iy} \right) = \arg \left( { - \dfrac{3}{2}} \right)\]
Let us take
\[ \Rightarrow \,\,x + iy = \left( { - \dfrac{3}{2}} \right)\]
Put, \[x = r\cos \theta \] and \[y = r\sin \theta \] , then on substituting we have
\[ \Rightarrow \,\,r\cos \theta + i\,r\sin \theta = \left( { - \dfrac{3}{2}} \right)\]
Take r as common in LHS, then
\[ \Rightarrow \,\,r\left( {\cos \theta + i\,\sin \theta } \right) = \left( { - \dfrac{3}{2}} \right)\]
Now, put \[r = \dfrac{3}{2}\] and \[\theta = \pi \] , then
\[ \Rightarrow \,\,\dfrac{3}{2}\left( {\cos \left( \pi \right) + i\,\sin \left( \pi \right)} \right) = \left( { - \dfrac{3}{2}} \right)\]
By the standard trigonometric table the value of \[\cos \left( \pi \right) = - 1\] and \[\sin \left( \pi \right) = 0\] , on substituting the values we have
\[ \Rightarrow \,\,\dfrac{3}{2}\left( { - 1 + i\,\left( 0 \right)} \right) = \left( { - \dfrac{3}{2}} \right)\]
\[ \Rightarrow \,\,\dfrac{3}{2}\left( { - 1} \right) = \left( { - \dfrac{3}{2}} \right)\]
\[ \Rightarrow \,\, - \dfrac{3}{2} = - \dfrac{3}{2}\]
Hence, \[\arg \left( { - \dfrac{3}{2}} \right) = \pi \]
Therefore, option (D) is correct.
So, the correct answer is “Option D”.
Note: A complex number are one of the numbers that are expressed in the form of \[a + ib\] , where a,b be the real number and \[i\] be an imaginary number, absolute number is an angle towards the direction of the complex number it can easily find by a formula of \[\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\] , where, \[y = r\sin \theta \] and \[x = r\sin \theta \] .
Complete step-by-step answer:
The argument of a complex number is defined as the angle inclined from the real axis in the direction of the complex number represented on the complex plane. It is denoted by “ \[\theta \] ”. It is measured in the standard unit called “radians”.
In polar form, a complex number is represented by the equation \[z = r\left( {\cos \theta + i\sin \theta } \right)\] , here, \[\theta \] is the argument. The argument function is denoted by \[\arg \left( z \right)\] , where z denotes the complex number, i.e., \[z = x + iy\] . The computation of the complex argument can be done by using the following formula:
i.e., \[\arg \left( z \right) = \theta \]
Therefore, the argument θ is represented as: \[\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\]
Now, consider the given question
\[ \Rightarrow \,\,\arg \left( z \right) = \arg \left( { - \dfrac{3}{2}} \right)\]
by
Where, z is the complex number i.e., \[z = x + iy\] , then
\[ \Rightarrow \,\,\arg \left( {x + iy} \right) = \arg \left( { - \dfrac{3}{2}} \right)\]
Let us take
\[ \Rightarrow \,\,x + iy = \left( { - \dfrac{3}{2}} \right)\]
Put, \[x = r\cos \theta \] and \[y = r\sin \theta \] , then on substituting we have
\[ \Rightarrow \,\,r\cos \theta + i\,r\sin \theta = \left( { - \dfrac{3}{2}} \right)\]
Take r as common in LHS, then
\[ \Rightarrow \,\,r\left( {\cos \theta + i\,\sin \theta } \right) = \left( { - \dfrac{3}{2}} \right)\]
Now, put \[r = \dfrac{3}{2}\] and \[\theta = \pi \] , then
\[ \Rightarrow \,\,\dfrac{3}{2}\left( {\cos \left( \pi \right) + i\,\sin \left( \pi \right)} \right) = \left( { - \dfrac{3}{2}} \right)\]
By the standard trigonometric table the value of \[\cos \left( \pi \right) = - 1\] and \[\sin \left( \pi \right) = 0\] , on substituting the values we have
\[ \Rightarrow \,\,\dfrac{3}{2}\left( { - 1 + i\,\left( 0 \right)} \right) = \left( { - \dfrac{3}{2}} \right)\]
\[ \Rightarrow \,\,\dfrac{3}{2}\left( { - 1} \right) = \left( { - \dfrac{3}{2}} \right)\]
\[ \Rightarrow \,\, - \dfrac{3}{2} = - \dfrac{3}{2}\]
Hence, \[\arg \left( { - \dfrac{3}{2}} \right) = \pi \]
Therefore, option (D) is correct.
So, the correct answer is “Option D”.
Note: A complex number are one of the numbers that are expressed in the form of \[a + ib\] , where a,b be the real number and \[i\] be an imaginary number, absolute number is an angle towards the direction of the complex number it can easily find by a formula of \[\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\] , where, \[y = r\sin \theta \] and \[x = r\sin \theta \] .
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE