
The bond dissociation energies of \[{{\text{X}}_{2}}\text{, }{{\text{Y}}_{2}}\text{ and XY}\] are in the ratio of \[1:0.5:1\] .
\[\Delta H\] for the formation of \[XY~is\text{ }-200\text{ }kJ/mol\]. The bond dissociation energy of \[{{\text{X}}_{2}}\] will be :
A. \[800\text{ }kJ/mol\]
B. \[200\text{ }kJ/mol\]
C. \[400\text{ }kJ/mol\]
D. \[100\text{ }kJ/mol\]
Answer
492.6k+ views
Hint: Use Hess’s law of constant heat summation. According to Hess’s law of constant heat summation, the enthalpy change for a reaction is the same whether the reaction takes place in one or a series of steps.
Complete step by step answer:
The bond dissociation energies of \[{{\text{X}}_{2}}\text{, }{{\text{Y}}_{2}}\text{ and XY}\] are in the ratio of \[1:0.5:1\].
Let a kJ/mol be the bond dissociation energy of \[{{\text{X}}_{2}}\]. The bond dissociation energy of \[{{\text{Y}}_{2}}\] will also be a kJ/mol. The bond dissociation energy of \[\text{XY}\]will be \[\text{0}\text{.5 }kJ/mol\].
Write balance chemical equations that represent bond dissociation processes.
\[\begin{align}
& \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \\
& {{\text{X}}_{2}}\to 2\text{X }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(2) } \\
& {{\text{Y}}_{2}}\to 2\text{Y }\Delta H\text{ = 0}\text{.5a kJ/mol }...\text{ }...\text{(3) } \\
\end{align}\]
Write the reaction for the formation of \[\text{XY}\].
\[\frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4)\]
Add equations (2) and (3) and divide the result with 2.
\[\begin{align}
& \frac{{{\text{X}}_{2}}+{{\text{Y}}_{2}}\to 2\text{X+}2\text{Y }\Delta H\text{ = a kJ/mol+0}\text{.5a kJ/mol}}{2}\text{ } \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
\end{align}\]
Subtract equation (5) from equation (1) to obtain equation (4)
\[\begin{align}
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
& -\left[ \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \right] \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4) \\
\end{align}\]
Calculate the enthalpy change for reaction (4) by subtracting the enthalpy change for reaction (1) from the enthalpy change for reaction (1)
\[\begin{align}
& \Delta H\text{ = 0}\text{.75a kJ/mol}-\text{a kJ/mol} \\
& \Delta H\text{ = }-\text{0}\text{.25a kJ/mol} \\
\end{align}\]
But \[\Delta H\]for the formation of \[\text{XY}\] is \[-200\text{ }kJ/mol\].
Hence,
\[\begin{align}
& -\text{200 kJ/mol = }-\text{0}\text{.25a kJ/mol} \\
& \text{a=}\frac{-200\text{ kJ/mol}}{-0.25} \\
& \text{a=800 kJ/mol}
\end{align}\]
Hence, the option A) \[800\text{ }kJ/mol\]is the correct answer.
Note:
When two reactions are added, the values of the enthalpy changes are also added. When two reactions are subtracted, the values of the enthalpy changes are also subtracted. When a reaction is divided with a number, the enthalpy change value is also divided with the same number.
Complete step by step answer:
The bond dissociation energies of \[{{\text{X}}_{2}}\text{, }{{\text{Y}}_{2}}\text{ and XY}\] are in the ratio of \[1:0.5:1\].
Let a kJ/mol be the bond dissociation energy of \[{{\text{X}}_{2}}\]. The bond dissociation energy of \[{{\text{Y}}_{2}}\] will also be a kJ/mol. The bond dissociation energy of \[\text{XY}\]will be \[\text{0}\text{.5 }kJ/mol\].
Write balance chemical equations that represent bond dissociation processes.
\[\begin{align}
& \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \\
& {{\text{X}}_{2}}\to 2\text{X }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(2) } \\
& {{\text{Y}}_{2}}\to 2\text{Y }\Delta H\text{ = 0}\text{.5a kJ/mol }...\text{ }...\text{(3) } \\
\end{align}\]
Write the reaction for the formation of \[\text{XY}\].
\[\frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4)\]
Add equations (2) and (3) and divide the result with 2.
\[\begin{align}
& \frac{{{\text{X}}_{2}}+{{\text{Y}}_{2}}\to 2\text{X+}2\text{Y }\Delta H\text{ = a kJ/mol+0}\text{.5a kJ/mol}}{2}\text{ } \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
\end{align}\]
Subtract equation (5) from equation (1) to obtain equation (4)
\[\begin{align}
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{X+Y }\Delta H\text{ = 0}\text{.75a kJ/mol }...\text{ }...\text{(5) } \\
& -\left[ \text{XY}\to \text{X+Y }\Delta H\text{ = a kJ/mol }...\text{ }...\text{(1)} \right] \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \frac{1}{2}{{\text{X}}_{2}}+\frac{1}{2}{{\text{Y}}_{2}}\to \text{XY}...\text{ }...(4) \\
\end{align}\]
Calculate the enthalpy change for reaction (4) by subtracting the enthalpy change for reaction (1) from the enthalpy change for reaction (1)
\[\begin{align}
& \Delta H\text{ = 0}\text{.75a kJ/mol}-\text{a kJ/mol} \\
& \Delta H\text{ = }-\text{0}\text{.25a kJ/mol} \\
\end{align}\]
But \[\Delta H\]for the formation of \[\text{XY}\] is \[-200\text{ }kJ/mol\].
Hence,
\[\begin{align}
& -\text{200 kJ/mol = }-\text{0}\text{.25a kJ/mol} \\
& \text{a=}\frac{-200\text{ kJ/mol}}{-0.25} \\
& \text{a=800 kJ/mol}
\end{align}\]
Hence, the option A) \[800\text{ }kJ/mol\]is the correct answer.
Note:
When two reactions are added, the values of the enthalpy changes are also added. When two reactions are subtracted, the values of the enthalpy changes are also subtracted. When a reaction is divided with a number, the enthalpy change value is also divided with the same number.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
