Answer
Verified
464.1k+ views
Hint:Use ideal gas law for the adiabatic process. Express P in terms of volume and take the derivative of the pressure respect to the volume and apply the derivative in the given equation to get the value of B in terms of pressure to get the value of n
Complete step by step solution:
We know an ideal gas in the adiabatic process follows the Law $PV^ \gamma = k$ where k is the constant.
here P is the pressure exerted by the gas and V is the volume occupied by the gas.
So now we can express the pressure in terms of volume as:
$P = \dfrac{k}{V^{\gamma}}$
The derivative of the $x^{n}$ is $n \times x^{n-1}$.
Applying the same result we can calculate the derivative of the P. Now no, we can take the derivative of pressure with respect to volume as:
$\dfrac{dP}{dV} = -k \gamma V^{-\gamma -1}$
Now substitute the value of the derivative of P in the given equation we get
$B = -V\dfrac{dP}{dV} = k \gamma \dfrac{P}{k} = \gamma P$
Thus we found The B in terms of pressure and we have seen that B is directly proportional to the pressure
Hence we can write $B = K \times P$.
As the power of the P term is 1 we get the value of $n = 1$.
Thus we have used ideal gas law for the adiabatic process and found the value of ‘n’ as ‘1’.
Note: We need to use the calculus here to calculate the value of the derivative and here we have to be careful about the formulae of the derivatives to get the correct result. Take or make notes of the derivatives as a list to remember and apply the derivatives in the problems.
Complete step by step solution:
We know an ideal gas in the adiabatic process follows the Law $PV^ \gamma = k$ where k is the constant.
here P is the pressure exerted by the gas and V is the volume occupied by the gas.
So now we can express the pressure in terms of volume as:
$P = \dfrac{k}{V^{\gamma}}$
The derivative of the $x^{n}$ is $n \times x^{n-1}$.
Applying the same result we can calculate the derivative of the P. Now no, we can take the derivative of pressure with respect to volume as:
$\dfrac{dP}{dV} = -k \gamma V^{-\gamma -1}$
Now substitute the value of the derivative of P in the given equation we get
$B = -V\dfrac{dP}{dV} = k \gamma \dfrac{P}{k} = \gamma P$
Thus we found The B in terms of pressure and we have seen that B is directly proportional to the pressure
Hence we can write $B = K \times P$.
As the power of the P term is 1 we get the value of $n = 1$.
Thus we have used ideal gas law for the adiabatic process and found the value of ‘n’ as ‘1’.
Note: We need to use the calculus here to calculate the value of the derivative and here we have to be careful about the formulae of the derivatives to get the correct result. Take or make notes of the derivatives as a list to remember and apply the derivatives in the problems.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE