
The CFSE for ${\left[ {{\text{CoC}}{{\text{l}}_6}} \right]^{4 - }}$ complex is $18000\,{\text{c}}{{\text{m}}^{ - 1}}$. The $ $ for ${\left[ {{\text{CoC}}{{\text{l}}_4}} \right]^{2 -}}$ will be
A. $18000\,{\text{c}}{{\text{m}}^{ - 1}}$
B. $16000\,{\text{c}}{{\text{m}}^{ - 1}}$
C. $6000\,{\text{c}}{{\text{m}}^{ - 1}}$
D. $2000\,{\text{c}}{{\text{m}}^{ - 1}}$
Answer
571.2k+ views
Hint: The octahedral crystal field splitting is equal to the $4/9$ of octahedral crystal field splitting. The octahedral crystal field splitting is larger than the tetrahedral crystal field splitting.
The following formula can be used-
$
{{\text{ }}_{{\text{td}}}}\,{\text{ = }}\,\dfrac{{\text{4}}}{{\,{\text{9}}}}{{\text{ }}_{{\text{oh}}}}
$
Step by step answer: he octahedral field splitting is represented as follows:
Valence electronic configuration of ${\text{C}}{{\text{o}}^{2 + }}$ = ${\text{3}}{{\text{d}}^7}$
The tetrahedral field splitting is represented as follows:
The relation between the energy difference of tetrahedral and octahedral field is as follows:
\[{{\text{ }}_{{\text{td}}}}\,{\text{ = }}\,\dfrac{{\text{4}}}{{\,{\text{9}}}}{{\text{ }}_{{\text{oh}}}}\]
Where,
\[{{\text{ }}_{{\text{td}}}}\]is the tetrahedral field splitting energy.
${ _{{\text{oh}}}}$ is the octahedral field splitting energy.
In the octahedral complex, six ligands split the energy level of the metal and the tetrahedral complex four ligands split the energy level of the metal, so the value of octahedral crystal field splitting is larger than the tetrahedral crystal field splitting.
Substitute $18000\,{\text{c}}{{\text{m}}^{ - 1}}$ for ${ _{{\text{oh}}}}$.
\[{{\text{ }}_{{\text{td}}}}\,{\text{ = }}\,\dfrac{{\text{4}}}{{\,{\text{9}}}} \times 18000\,{\text{c}}{{\text{m}}^{ - 1}}\]
\[{{\text{ }}_{{\text{td}}}}\,{\text{ = }}\,8000\,{\text{c}}{{\text{m}}^{ - 1}}\]
So, the tetrahedral field splitting energy for ${\left[ {{\text{CoC}}{{\text{l}}_4}} \right]^{2 - }}$complex is $8000\,{\text{c}}{{\text{m}}^{ - 1}}$.
So, option (A), (B) and (D) are incorrect.
Therefore, option (C) $8000\,{\text{c}}{{\text{m}}^{ - 1}}$ is correct.
Additional information: The ${ _{{\text{oh}}}}$ per ligand is determined by dividing the ${ _{{\text{oh}}}}$ by six and \[{{\text{ }}_{{\text{td}}}}\] per ligand is determined by dividing the \[{{\text{ }}_{{\text{td}}}}\] by four.
Note: Both the $ $values for octahedral as well as tetrahedral should be in the same unit. As the octahedral crystal field splitting is always larger than the tetrahedral crystal field splitting so, here, the answer of \[{{\text{ }}_{{\text{td}}}}\] will be less than$18000\,{\text{c}}{{\text{m}}^{ - 1}}$. For the calculation of ${ _{{\text{oh}}}}$ from the given \[{{\text{ }}_{{\text{td}}}}\], the formula used will be \[\,{{\text{ }}_{{\text{oh}}}}{\text{ = }}\,\dfrac{9}{{\,4}}{{\text{ }}_{{\text{td}}}}\].
The following formula can be used-
$
{{\text{ }}_{{\text{td}}}}\,{\text{ = }}\,\dfrac{{\text{4}}}{{\,{\text{9}}}}{{\text{ }}_{{\text{oh}}}}
$
Step by step answer: he octahedral field splitting is represented as follows:
Valence electronic configuration of ${\text{C}}{{\text{o}}^{2 + }}$ = ${\text{3}}{{\text{d}}^7}$
The tetrahedral field splitting is represented as follows:
The relation between the energy difference of tetrahedral and octahedral field is as follows:
\[{{\text{ }}_{{\text{td}}}}\,{\text{ = }}\,\dfrac{{\text{4}}}{{\,{\text{9}}}}{{\text{ }}_{{\text{oh}}}}\]
Where,
\[{{\text{ }}_{{\text{td}}}}\]is the tetrahedral field splitting energy.
${ _{{\text{oh}}}}$ is the octahedral field splitting energy.
In the octahedral complex, six ligands split the energy level of the metal and the tetrahedral complex four ligands split the energy level of the metal, so the value of octahedral crystal field splitting is larger than the tetrahedral crystal field splitting.
Substitute $18000\,{\text{c}}{{\text{m}}^{ - 1}}$ for ${ _{{\text{oh}}}}$.
\[{{\text{ }}_{{\text{td}}}}\,{\text{ = }}\,\dfrac{{\text{4}}}{{\,{\text{9}}}} \times 18000\,{\text{c}}{{\text{m}}^{ - 1}}\]
\[{{\text{ }}_{{\text{td}}}}\,{\text{ = }}\,8000\,{\text{c}}{{\text{m}}^{ - 1}}\]
So, the tetrahedral field splitting energy for ${\left[ {{\text{CoC}}{{\text{l}}_4}} \right]^{2 - }}$complex is $8000\,{\text{c}}{{\text{m}}^{ - 1}}$.
So, option (A), (B) and (D) are incorrect.
Therefore, option (C) $8000\,{\text{c}}{{\text{m}}^{ - 1}}$ is correct.
Additional information: The ${ _{{\text{oh}}}}$ per ligand is determined by dividing the ${ _{{\text{oh}}}}$ by six and \[{{\text{ }}_{{\text{td}}}}\] per ligand is determined by dividing the \[{{\text{ }}_{{\text{td}}}}\] by four.
Note: Both the $ $values for octahedral as well as tetrahedral should be in the same unit. As the octahedral crystal field splitting is always larger than the tetrahedral crystal field splitting so, here, the answer of \[{{\text{ }}_{{\text{td}}}}\] will be less than$18000\,{\text{c}}{{\text{m}}^{ - 1}}$. For the calculation of ${ _{{\text{oh}}}}$ from the given \[{{\text{ }}_{{\text{td}}}}\], the formula used will be \[\,{{\text{ }}_{{\text{oh}}}}{\text{ = }}\,\dfrac{9}{{\,4}}{{\text{ }}_{{\text{td}}}}\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

