The circumference of the base of a cylinder is 132 cm and its height is 25 cm. Find the volume of the cylinder.
Answer
Verified
498.9k+ views
Hint- Here, we will proceed by using the formula for the circumference of the base of the cylinder which is given by $2\pi r$ and from here we will find the radius of the cylinder. Then, we will apply the formula i.e., Volume of the cylinder = $\pi {r^2}h$.
Complete Step-by-Step solution:
Let us consider a cylinder having the radius of the base as r cm as shown in the figure
Given, Height of the cylinder, h = 25 cm
Circumference of the base of the cylinder = 132 cm
As we know that the circumference of the base of any cylinder having radius r and height h is given by
Circumference of the base of the cylinder = $2\pi r$
$ \Rightarrow 132 = 2\pi r$
Taking $\pi = \dfrac{{22}}{7}$, we have
$
\Rightarrow 132 = 2\left( {\dfrac{{22}}{7}} \right)r \\
\Rightarrow r = \dfrac{{132}}{{2\left( {\dfrac{{22}}{7}} \right)}} \\
\Rightarrow r = \dfrac{{132 \times 7}}{{44}} = 3 \times 7 \\
\Rightarrow r = 21{\text{ cm}} \\
$
The radius of the given cylinder is 21 cm
Also, we know that the volume of any cylinder having radius r and height h is given by
Volume of the cylinder = $\pi {r^2}h$
Using the above formula, the required volume of the given cylinder is given by
${\text{V}} = \pi {r^2}h$
Putting r = 21 cm, h = 25 cm and $\pi = \dfrac{{22}}{7}$ in the above equation, we have
$
\Rightarrow {\text{V}} = \left( {\dfrac{{22}}{7}} \right) \times {\left( {21} \right)^2} \times 25 \\
\Rightarrow {\text{V}} = 34650{\text{ c}}{{\text{m}}^3} \\
$
Therefore, the required volume of the given cylinder is 34650 ${\text{c}}{{\text{m}}^3}$.
Note- The radius of any cylinder always remains constant i.e., the radius is the same at any level as the radius at the base. Since, the base of any cylinder is circular in geometry (having radius of the circle as the radius of the cylinder) that’s why the circumference of the base of the cylinder is equal to the circumference of a circle having the same radius as that of the cylinder.
Complete Step-by-Step solution:
Let us consider a cylinder having the radius of the base as r cm as shown in the figure
Given, Height of the cylinder, h = 25 cm
Circumference of the base of the cylinder = 132 cm
As we know that the circumference of the base of any cylinder having radius r and height h is given by
Circumference of the base of the cylinder = $2\pi r$
$ \Rightarrow 132 = 2\pi r$
Taking $\pi = \dfrac{{22}}{7}$, we have
$
\Rightarrow 132 = 2\left( {\dfrac{{22}}{7}} \right)r \\
\Rightarrow r = \dfrac{{132}}{{2\left( {\dfrac{{22}}{7}} \right)}} \\
\Rightarrow r = \dfrac{{132 \times 7}}{{44}} = 3 \times 7 \\
\Rightarrow r = 21{\text{ cm}} \\
$
The radius of the given cylinder is 21 cm
Also, we know that the volume of any cylinder having radius r and height h is given by
Volume of the cylinder = $\pi {r^2}h$
Using the above formula, the required volume of the given cylinder is given by
${\text{V}} = \pi {r^2}h$
Putting r = 21 cm, h = 25 cm and $\pi = \dfrac{{22}}{7}$ in the above equation, we have
$
\Rightarrow {\text{V}} = \left( {\dfrac{{22}}{7}} \right) \times {\left( {21} \right)^2} \times 25 \\
\Rightarrow {\text{V}} = 34650{\text{ c}}{{\text{m}}^3} \\
$
Therefore, the required volume of the given cylinder is 34650 ${\text{c}}{{\text{m}}^3}$.
Note- The radius of any cylinder always remains constant i.e., the radius is the same at any level as the radius at the base. Since, the base of any cylinder is circular in geometry (having radius of the circle as the radius of the cylinder) that’s why the circumference of the base of the cylinder is equal to the circumference of a circle having the same radius as that of the cylinder.
Recently Updated Pages
If the perimeter of the equilateral triangle is 18-class-10-maths-CBSE
How do you make the plural form of most of the words class 10 english CBSE
Quotes and Slogans on Consumer Rights Can Anybody Give Me
What is the orbit of a satellite Find out the basis class 10 physics CBSE
the period from 1919 to 1947 forms an important phase class 10 social science CBSE
If the average marks of three batches of 55 60 and class 10 maths CBSE
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE