The coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$ is
Answer
Verified
442.8k+ views
Hint: In the above question you have to find the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$. At first, you have to reduce the expanding term then by applying a simple law of exponent, the term will get reduced. Now find the coefficient of ${x^n}$ in the expansion of the new reduced term. So let us see how we can solve this problem.
Step by step solution:
In the given question we were asked to find the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$. First of all, we will reduce the expression by the formula of $\dfrac{{x + y}}{z} = \dfrac{x}{z} + \dfrac{y}{z}$.
On applying the same formula on the expanding term we get
$= \dfrac{{{e^{7x}}}}{{{e^{3x}}}} + \dfrac{{{e^x}}}{{{e^{3x}}}}$
According to the law of exponent, $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$ . On applying the same law of exponent we get,
$= {e^{7x - 3x}} + {e^{x - 3x}}$
$= {e^{4x}} + {e^{ - 2x}}$
Now, we have reduced the term in $= {e^{4x}} + {e^{ - 2x}}$ . So we have to find the coefficient of ${x^n}$ in ${e^{4x}} + {e^{ - 2x}}$
$= \dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$
Therefore, the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$ is $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Note:
In the above solution we have used the law of exponent for reducing the expanding term and then we find the coefficient of ${x^n}$ in the expansion of that term which in our case is ${e^{4x}} + {e^{ - 2x}}$. Then we get the coefficients as 4 and -2. So, we get $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Step by step solution:
In the given question we were asked to find the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$. First of all, we will reduce the expression by the formula of $\dfrac{{x + y}}{z} = \dfrac{x}{z} + \dfrac{y}{z}$.
On applying the same formula on the expanding term we get
$= \dfrac{{{e^{7x}}}}{{{e^{3x}}}} + \dfrac{{{e^x}}}{{{e^{3x}}}}$
According to the law of exponent, $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$ . On applying the same law of exponent we get,
$= {e^{7x - 3x}} + {e^{x - 3x}}$
$= {e^{4x}} + {e^{ - 2x}}$
Now, we have reduced the term in $= {e^{4x}} + {e^{ - 2x}}$ . So we have to find the coefficient of ${x^n}$ in ${e^{4x}} + {e^{ - 2x}}$
$= \dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$
Therefore, the coefficient of ${x^n}$ in the expansion of $\dfrac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$ is $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Note:
In the above solution we have used the law of exponent for reducing the expanding term and then we find the coefficient of ${x^n}$ in the expansion of that term which in our case is ${e^{4x}} + {e^{ - 2x}}$. Then we get the coefficients as 4 and -2. So, we get $\dfrac{{{{(4)}^n}}}{{n!}} + \dfrac{{{{( - 2)}^n}}}{{n!}}$.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE