
The contrapositive of $p \to \left( {\neg q \to \neg r} \right)$
A.$\left( {\neg q \wedge r} \right) \to \neg p$
B.$\left( {q \wedge \neg r} \right) \to \neg p$
C.$p \to \left( {\neg r \vee q} \right)$
D.$p \wedge \left( {q \vee r} \right)$
Answer
571.8k+ views
Hint: If the conditional statement is \[a \to b\], then the contrapositive statement is \[\neg b \to \neg a\]. Write the contrapositive statement for the given conditional statement. Then solve the bracket using the condition $a \to b \equiv \neg a \vee b$. To get the final answer, use to De Morgan’s law, \[\neg \left( {p \wedge q} \right) = \neg p \vee \neg q\]
Complete step-by-step answer:
We know that if the conditional statement is \[a \to b\], then the contrapositive statement is \[\neg b \to \neg a\]
From the given conditional statement, $p \to \left( {\neg q \to \neg r} \right)$, we can write the contrapositive statement as,
$\neg \left( {\neg q \to \neg r} \right) \to \neg p$.
Now, we will solve the bracket.
As we know, $a \to b \equiv \neg a \vee b$
So, the contrapositive expression is equivalent to $\neg \left( {\neg q \to \neg r} \right) \to \neg p \equiv \neg \left( {q \vee \neg r} \right) \to \neg p$
Now, we will apply De Morgan’s law, which states that, \[\neg \left( {a \wedge b} \right) = \neg a \vee \neg b\]
Therefore, for $\neg \left( {q \vee \neg r} \right) \to \neg p$, we get,
$\neg \left( {q \vee \neg r} \right) \to \neg p \equiv \left( {\neg q \wedge r} \right) \to \neg p$
Hence, option A is correct.
Note: If the conditional statement is \[p \to q\], then the converse is \[q \to p\]. If the conditional statement is \[p \to q\], then the inverse is \[\neg p \to \neg q\] and if the conditional statement is \[p \to q\], then the contrapositive statement is \[\neg q \to \neg p\]. According to De Morgan’s law, \[\neg \left( {p \wedge q} \right) = \neg p \vee \neg q\]
Complete step-by-step answer:
We know that if the conditional statement is \[a \to b\], then the contrapositive statement is \[\neg b \to \neg a\]
From the given conditional statement, $p \to \left( {\neg q \to \neg r} \right)$, we can write the contrapositive statement as,
$\neg \left( {\neg q \to \neg r} \right) \to \neg p$.
Now, we will solve the bracket.
As we know, $a \to b \equiv \neg a \vee b$
So, the contrapositive expression is equivalent to $\neg \left( {\neg q \to \neg r} \right) \to \neg p \equiv \neg \left( {q \vee \neg r} \right) \to \neg p$
Now, we will apply De Morgan’s law, which states that, \[\neg \left( {a \wedge b} \right) = \neg a \vee \neg b\]
Therefore, for $\neg \left( {q \vee \neg r} \right) \to \neg p$, we get,
$\neg \left( {q \vee \neg r} \right) \to \neg p \equiv \left( {\neg q \wedge r} \right) \to \neg p$
Hence, option A is correct.
Note: If the conditional statement is \[p \to q\], then the converse is \[q \to p\]. If the conditional statement is \[p \to q\], then the inverse is \[\neg p \to \neg q\] and if the conditional statement is \[p \to q\], then the contrapositive statement is \[\neg q \to \neg p\]. According to De Morgan’s law, \[\neg \left( {p \wedge q} \right) = \neg p \vee \neg q\]
Recently Updated Pages
Centrosome is found only in A Animal cells B Plant class 12 biology CBSE

Mirage is a phenomena due to A Refraction of light class 12 physics CBSE

Antivenom against snake poison contains A Antigens class 12 biology CBSE

With reference to flower colour in snapdragon explain class 12 biology CBSE

What is meant by booth capturing class 12 social science CBSE

Assertion Fuse wire must have high resistance and low class 12 physics CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

