The correct order for acid strength of compounds ${\text{CH}} \equiv {\text{CH}}$, ${\text{C}}{{\text{H}}_3}{\text{ - C}} \equiv {\text{CH}}$ and ${\text{C}}{{\text{H}}_2}{\text{ = C}}{{\text{H}}_2}$is as follows:
(A)${\text{CH}} \equiv {\text{CH > C}}{{\text{H}}_{\text{2}}}{\text{ = C}}{{\text{H}}_{\text{2}}}{\text{ > C}}{{\text{H}}_3}{\text{ - C = CH}}$
(B)${\text{CH}} \equiv {\text{CH > C}}{{\text{H}}_3}{\text{ - C}} \equiv {\text{CH > C}}{{\text{H}}_2}{\text{ - C}}{{\text{H}}_2}$
(C)${\text{C}}{{\text{H}}_3}{\text{ - C}} \equiv {\text{CH > C}}{{\text{H}}_2}{\text{ = C}}{{\text{H}}_2}{\text{ > CH}} \equiv {\text{CH}}$
(D)${\text{C}}{{\text{H}}_3}{\text{ - C}} \equiv {\text{CH > CH}} \equiv {\text{CH > C}}{{\text{H}}_2}{\text{ = C}}{{\text{H}}_2}$
Answer
Verified
457.2k+ views
Hint: The given compounds are three hydrocarbons alkane, alkene, and alkyne with saturated and unsaturated carbon atoms respectively. The s-character of these compounds depends upon their saturation and hybridization and acidic character more for more s-character.
Complete Step-by-step solution:
Let us understand how s-character affects the acidity of the given organic hydrocarbon. If the s-character is more in the bond between carbon and hydrogen atoms in the given compound, the s-orbital being aligned along the axis of the C-H bond, the electron cloud is more attracted towards the nucleus of the central atom (carbon) and thus the hydrogen atom becomes more available to be donated to lewis bases.
We know that in alkanes the bonds are single bonds formed by ${\text{s}}{{\text{p}}^{\text{3}}}$ hybridization, in alkenes the the bonds are double bonds formed by ${\text{s}}{{\text{p}}^{\text{2}}}$ hybridization and alkynes the bonds are triple bonds formed by sp hybridization.
In the above three compounds ${\text{CH}} \equiv {\text{CH}}$ has triple bonds so it is sp hybridized with 50% s-character, ${\text{C}}{{\text{H}}_3}{\text{ - C}} \equiv {\text{C}}{{\text{H}}_3}$ is alkyne with triple bond and the hybridization sp with 50% S-character and ${\text{C}}{{\text{H}}_2}{\text{ = C}}{{\text{H}}_2}$ has double bond with sp hybridization and its s-character is 33.3%. With the increase in s-character the acidic strength increases. So the correct order of acidic strength for above compounds follows alkyne > alkene > alkane.
The answer for the question is option (B) ${\text{CH}} \equiv {\text{CH}} > {\text{C}}{{\text{H}}_3}{\text{ - C}} \equiv {\text{CH > C}}{{\text{H}}_2}{\text{ = C}}{{\text{H}}_2}$
NOTE: In the compound ${\text{C}}{{\text{H}}_3}{\text{ - C}} \equiv {\text{CH}}$ there are two types of bonds, the triple and the single bond but as the priority in naming the hydrocarbon goes for triple bond. So the compound is alkyne but it is not alkane.
Complete Step-by-step solution:
Let us understand how s-character affects the acidity of the given organic hydrocarbon. If the s-character is more in the bond between carbon and hydrogen atoms in the given compound, the s-orbital being aligned along the axis of the C-H bond, the electron cloud is more attracted towards the nucleus of the central atom (carbon) and thus the hydrogen atom becomes more available to be donated to lewis bases.
We know that in alkanes the bonds are single bonds formed by ${\text{s}}{{\text{p}}^{\text{3}}}$ hybridization, in alkenes the the bonds are double bonds formed by ${\text{s}}{{\text{p}}^{\text{2}}}$ hybridization and alkynes the bonds are triple bonds formed by sp hybridization.
In the above three compounds ${\text{CH}} \equiv {\text{CH}}$ has triple bonds so it is sp hybridized with 50% s-character, ${\text{C}}{{\text{H}}_3}{\text{ - C}} \equiv {\text{C}}{{\text{H}}_3}$ is alkyne with triple bond and the hybridization sp with 50% S-character and ${\text{C}}{{\text{H}}_2}{\text{ = C}}{{\text{H}}_2}$ has double bond with sp hybridization and its s-character is 33.3%. With the increase in s-character the acidic strength increases. So the correct order of acidic strength for above compounds follows alkyne > alkene > alkane.
The answer for the question is option (B) ${\text{CH}} \equiv {\text{CH}} > {\text{C}}{{\text{H}}_3}{\text{ - C}} \equiv {\text{CH > C}}{{\text{H}}_2}{\text{ = C}}{{\text{H}}_2}$
NOTE: In the compound ${\text{C}}{{\text{H}}_3}{\text{ - C}} \equiv {\text{CH}}$ there are two types of bonds, the triple and the single bond but as the priority in naming the hydrocarbon goes for triple bond. So the compound is alkyne but it is not alkane.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE