Answer
Verified
99.9k+ views
Hint: The Geiger-Muller counter is used for measuring the radiation emitted by a radioactive material. Half-life of the material is also given. After 2 hrs it rate decreases to $5s^{-1}$. We have to find the initial rate using the given data.
Formula used:
We can use the same formula connecting amount of the original sample, remaining amount of the sample, half-life and time taken for decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $t$ time or final rate.
$N_{0}$ is the original amount of sample or initial rate.
$\mathrm{T}$ is the half-life of the radioactive material.
Complete answer:
We have a radioactive material of half-life 30 minutes. And the count rate of Gieger-Muller counter
decreases to $5 s^{-1}$ after 2 hrs. With these data we have to find the initial rate shown in
Geiger-Muller counter.
In order to find the initial rate, we have the equation connecting all the known factors in question as:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Here we have to find $N_{0}$ that is the initial count rate.
Final count rate, $N=5 s^{-1}$
Half-life of the radioactive material, $T=30$ minutes
Time taken, $t=2 h r s=120$ minutes
On substituting the values in the equation, we get:
$\dfrac{5}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{120}{30}}$
Therefore, initial count rate is:
$N_{0}=\dfrac{5}{\left(\dfrac{1}{2}\right)^{4}}=5 \times 2^{4}=16 \times 5=80 s^{-1}$
Thus, option (D) is correct.
Additional information: The Geiger-Muller counter is an instrument which measures and detects ionization produced by radiation. It can count particles at rates up to 10,000 per second. Radioactive particles produce radiation when it decays. So, it can also be used to measure decay of radioactive materials.
Note: Amount here is taken as the rate since the rate is given in the question. Radioactivity measurement means how much of radioactivity has decayed. So, we can replace the amount with the rate. Don’t forget to convert the unit of time before calculating.
Formula used:
We can use the same formula connecting amount of the original sample, remaining amount of the sample, half-life and time taken for decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $t$ time or final rate.
$N_{0}$ is the original amount of sample or initial rate.
$\mathrm{T}$ is the half-life of the radioactive material.
Complete answer:
We have a radioactive material of half-life 30 minutes. And the count rate of Gieger-Muller counter
decreases to $5 s^{-1}$ after 2 hrs. With these data we have to find the initial rate shown in
Geiger-Muller counter.
In order to find the initial rate, we have the equation connecting all the known factors in question as:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Here we have to find $N_{0}$ that is the initial count rate.
Final count rate, $N=5 s^{-1}$
Half-life of the radioactive material, $T=30$ minutes
Time taken, $t=2 h r s=120$ minutes
On substituting the values in the equation, we get:
$\dfrac{5}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{120}{30}}$
Therefore, initial count rate is:
$N_{0}=\dfrac{5}{\left(\dfrac{1}{2}\right)^{4}}=5 \times 2^{4}=16 \times 5=80 s^{-1}$
Thus, option (D) is correct.
Additional information: The Geiger-Muller counter is an instrument which measures and detects ionization produced by radiation. It can count particles at rates up to 10,000 per second. Radioactive particles produce radiation when it decays. So, it can also be used to measure decay of radioactive materials.
Note: Amount here is taken as the rate since the rate is given in the question. Radioactivity measurement means how much of radioactivity has decayed. So, we can replace the amount with the rate. Don’t forget to convert the unit of time before calculating.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main