
The crystal field stabilization energy (CFSE) \[{\text{[Fe(}}{{\text{H}}_2}{\text{O}}{{\text{)}}_6}]{\text{C}}{{\text{l}}_2}\] and \[{{\text{K}}_2}{\text{[NiC}}{{\text{l}}_4}]\], respectively, are:
a.) \[\text{-0}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
b.) \[\text{-0}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -1}\text{.2}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
c.) \[\text{-2}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -1}\text{.2}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
d.) \[\text{-0}\text{.6}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{0}}}\text{ and -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
Answer
586.2k+ views
Hint: Crystal field theory states that there is a difference of \[{\text{10}}{{\text{D}}_{\text{q}}}\] between \[{{\text{e}}_{\text{g}}}\] and \[{{\text{t}}_{{\text{2g}}}}\] energy levels. When an electron goes into \[{{\text{t}}_{{\text{2g}}}}\] which is a lower energy level, it stabilizes the system by an amount of \[\text{-4}{{\text{D}}_{\text{q}}}\] and when an electron goes into \[{{\text{e}}_{\text{g}}}\] level, it destabilizes the system by \[\text{+6}{{\text{D}}_{\text{q}}}\].
Complete answer:
The stability which results due to placing of a transition metal ion into a field that is caused by the set of ligands which surround it, is called Crystal field stabilization energy. In the complex, \[\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]\text{C}{{\text{l}}_{2}}\], Fe forms a +2 ion i.e. \[{{\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]}^{+2}}\].
The electronic configuration of Iron in +2 becomes \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{3}}\].
is a weak field ligand and hence pairing of electrons does not occur. Electrons in \[{{\text{t}}_{\text{2g}}}\] are given as \[\text{t}_{\text{2g}}^{\text{2, 1, 1}}\].
Formula for calculating crystal field stabilization energy is \[\Delta \text{ = no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{t}}_{\text{2g}}}\text{ }\times \text{ (-0}\text{.4) + no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{e}}_{g}}\text{ }\times \text{ (0}\text{.6)}\]
Thus, for this complex - \[\Delta \text{ = 4}{{\Delta }_{0}}\times \text{ (-0}\text{.4) + 2}{{\Delta }_{0}}\text{ }\times \text{ (0}\text{.6)}\]
\[\Delta \text{ = - 0}\text{.4}{{\Delta }_{0}}\]
In the complex, \[{{\text{K}}_{2}}\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]\] charge on Nickel is +2 as it forms \[{{\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]}^{-2}}\].
The electronic configuration of Nickel in +2 is \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{8}}\].
is also a weak field ligand and hence pairing does not occur and the complex formed has tetrahedral geometry. Electrons in \[{{\text{e}}_{\text{g}}}\] are \[\text{e}_{\text{g}}^{\text{2, 2}}\].
Putting these values in the formula we get, \[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.6 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 0}\text{.4 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ = -2}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 1}\text{.6}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
So, the correct answer is “Option A”.
Note: Complexes which have a higher number of unpaired electrons are called as high spin complexes and the ones which have low number of unpaired electrons are called as low spin complexes. Most of the time, high spin complexes have weak field ligands and hence their splitting energy has lower value. Conversely, low spin complexes have strong field ligands and hence have higher value of splitting energy.
Complete answer:
The stability which results due to placing of a transition metal ion into a field that is caused by the set of ligands which surround it, is called Crystal field stabilization energy. In the complex, \[\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]\text{C}{{\text{l}}_{2}}\], Fe forms a +2 ion i.e. \[{{\text{ }\!\![\!\!\text{ Fe(}{{\text{H}}_{2}}\text{O}{{\text{)}}_{6}}]}^{+2}}\].
The electronic configuration of Iron in +2 becomes \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{3}}\].
is a weak field ligand and hence pairing of electrons does not occur. Electrons in \[{{\text{t}}_{\text{2g}}}\] are given as \[\text{t}_{\text{2g}}^{\text{2, 1, 1}}\].
Formula for calculating crystal field stabilization energy is \[\Delta \text{ = no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{t}}_{\text{2g}}}\text{ }\times \text{ (-0}\text{.4) + no}\text{. of }{{\text{e}}^{-}}\text{ in }{{\text{e}}_{g}}\text{ }\times \text{ (0}\text{.6)}\]
Thus, for this complex - \[\Delta \text{ = 4}{{\Delta }_{0}}\times \text{ (-0}\text{.4) + 2}{{\Delta }_{0}}\text{ }\times \text{ (0}\text{.6)}\]
\[\Delta \text{ = - 0}\text{.4}{{\Delta }_{0}}\]
In the complex, \[{{\text{K}}_{2}}\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]\] charge on Nickel is +2 as it forms \[{{\text{ }\!\![\!\!\text{ NiC}{{\text{l}}_{4}}]}^{-2}}\].
The electronic configuration of Nickel in +2 is \[\text{ }\!\![\!\!\text{ Ar }\!\!]\!\!\text{ 3}{{\text{d}}^{8}}\].
is also a weak field ligand and hence pairing does not occur and the complex formed has tetrahedral geometry. Electrons in \[{{\text{e}}_{\text{g}}}\] are \[\text{e}_{\text{g}}^{\text{2, 2}}\].
Putting these values in the formula we get, \[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.6 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 0}\text{.4 }\!\!\times\!\!\text{ 4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ = -2}\text{.4}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\text{ + 1}\text{.6}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
\[\text{ }\!\!\Delta\!\!\text{ = -0}\text{.8}{{\text{ }\!\!\Delta\!\!\text{ }}_{\text{t}}}\]
So, the correct answer is “Option A”.
Note: Complexes which have a higher number of unpaired electrons are called as high spin complexes and the ones which have low number of unpaired electrons are called as low spin complexes. Most of the time, high spin complexes have weak field ligands and hence their splitting energy has lower value. Conversely, low spin complexes have strong field ligands and hence have higher value of splitting energy.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

