The cubit is an ancient unit of length based on the distance between that elbow and the tip of the middle finger of the measurer. Assume that the distance ranged from 43 to 53 cm, and suppose that ancient drawings indicate that a cylindrical pillar was to have a length of 9 cubits and a diameter of 2 cubits. For the state range, what are the lower value and the upper value, respectively for the cylinder's volume in cubic meters?
Answer
Verified
461.7k+ views
Hint: We can do the question either by converting the given parameters first and then finding the volume, or by initially finding the volume and then performing the conversion. Here, we are given the length and the diameter. Therefore, we follow the latter approach.
Complete step by step solution:
This problem gives us the maximum and minimum values for the length of a cubit. We just need to convert the units from centimeters to meters, write our equation, and plug in the max and min.
We’re given that h is 9 cubits. Hence we multiply it with the minimum and maximum length of a cubit i.e. ${{h}_{\min }}=9(43cm)(\dfrac{{{10}^{-2}}cm}{1cm})=3.87m$
Similarly, ${{h}_{\max }}=9(53cm)(\dfrac{{{10}^{-2}}cm}{1cm})=4.77m$
The column is between 3.9m and 4.8 m
We know that the formula to find the volume of a cylinder is
$V=\pi {{r}^{2}}h$, where $h$ is the length or the height of the cylinder and $r$ is the radius of the cylinder.
We're given the diameter, but we can use $\dfrac{d}{2} = r = 1.0$ cubit.
Substituting, we get:
$
\Rightarrow {{V}_{\min }}=\pi {{(0.43)}^{2}}(3.87)=2.248{{m}^{2}} \\
\Rightarrow {{V}_{\max }}=\pi {{(0.53)}^{2}}(4.77)=4.209{{m}^{2}} \\
$
Hence the value of ${{V}_{\min }}$ is $2.248{{m}^{2}}$ and that of ${{V}_{\max }}$ is $4.209{{m}^{2}}$.
Note: To convert between absolute uncertainty and percent uncertainty, we’ll use this formula (m = measurement, $\Delta u$ = absolute uncertainty):
$m\pm \Delta u=m\pm (\dfrac{\Delta u}{m}\times 100%)$)
Complete step by step solution:
This problem gives us the maximum and minimum values for the length of a cubit. We just need to convert the units from centimeters to meters, write our equation, and plug in the max and min.
We’re given that h is 9 cubits. Hence we multiply it with the minimum and maximum length of a cubit i.e. ${{h}_{\min }}=9(43cm)(\dfrac{{{10}^{-2}}cm}{1cm})=3.87m$
Similarly, ${{h}_{\max }}=9(53cm)(\dfrac{{{10}^{-2}}cm}{1cm})=4.77m$
The column is between 3.9m and 4.8 m
We know that the formula to find the volume of a cylinder is
$V=\pi {{r}^{2}}h$, where $h$ is the length or the height of the cylinder and $r$ is the radius of the cylinder.
We're given the diameter, but we can use $\dfrac{d}{2} = r = 1.0$ cubit.
Substituting, we get:
$
\Rightarrow {{V}_{\min }}=\pi {{(0.43)}^{2}}(3.87)=2.248{{m}^{2}} \\
\Rightarrow {{V}_{\max }}=\pi {{(0.53)}^{2}}(4.77)=4.209{{m}^{2}} \\
$
Hence the value of ${{V}_{\min }}$ is $2.248{{m}^{2}}$ and that of ${{V}_{\max }}$ is $4.209{{m}^{2}}$.
Note: To convert between absolute uncertainty and percent uncertainty, we’ll use this formula (m = measurement, $\Delta u$ = absolute uncertainty):
$m\pm \Delta u=m\pm (\dfrac{\Delta u}{m}\times 100%)$)
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE