Answer
Verified
439.2k+ views
Hint: We can do the question either by converting the given parameters first and then finding the volume, or by initially finding the volume and then performing the conversion. Here, we are given the length and the diameter. Therefore, we follow the latter approach.
Complete step by step solution:
This problem gives us the maximum and minimum values for the length of a cubit. We just need to convert the units from centimeters to meters, write our equation, and plug in the max and min.
We’re given that h is 9 cubits. Hence we multiply it with the minimum and maximum length of a cubit i.e. ${{h}_{\min }}=9(43cm)(\dfrac{{{10}^{-2}}cm}{1cm})=3.87m$
Similarly, ${{h}_{\max }}=9(53cm)(\dfrac{{{10}^{-2}}cm}{1cm})=4.77m$
The column is between 3.9m and 4.8 m
We know that the formula to find the volume of a cylinder is
$V=\pi {{r}^{2}}h$, where $h$ is the length or the height of the cylinder and $r$ is the radius of the cylinder.
We're given the diameter, but we can use $\dfrac{d}{2} = r = 1.0$ cubit.
Substituting, we get:
$
\Rightarrow {{V}_{\min }}=\pi {{(0.43)}^{2}}(3.87)=2.248{{m}^{2}} \\
\Rightarrow {{V}_{\max }}=\pi {{(0.53)}^{2}}(4.77)=4.209{{m}^{2}} \\
$
Hence the value of ${{V}_{\min }}$ is $2.248{{m}^{2}}$ and that of ${{V}_{\max }}$ is $4.209{{m}^{2}}$.
Note: To convert between absolute uncertainty and percent uncertainty, we’ll use this formula (m = measurement, $\Delta u$ = absolute uncertainty):
$m\pm \Delta u=m\pm (\dfrac{\Delta u}{m}\times 100%)$)
Complete step by step solution:
This problem gives us the maximum and minimum values for the length of a cubit. We just need to convert the units from centimeters to meters, write our equation, and plug in the max and min.
We’re given that h is 9 cubits. Hence we multiply it with the minimum and maximum length of a cubit i.e. ${{h}_{\min }}=9(43cm)(\dfrac{{{10}^{-2}}cm}{1cm})=3.87m$
Similarly, ${{h}_{\max }}=9(53cm)(\dfrac{{{10}^{-2}}cm}{1cm})=4.77m$
The column is between 3.9m and 4.8 m
We know that the formula to find the volume of a cylinder is
$V=\pi {{r}^{2}}h$, where $h$ is the length or the height of the cylinder and $r$ is the radius of the cylinder.
We're given the diameter, but we can use $\dfrac{d}{2} = r = 1.0$ cubit.
Substituting, we get:
$
\Rightarrow {{V}_{\min }}=\pi {{(0.43)}^{2}}(3.87)=2.248{{m}^{2}} \\
\Rightarrow {{V}_{\max }}=\pi {{(0.53)}^{2}}(4.77)=4.209{{m}^{2}} \\
$
Hence the value of ${{V}_{\min }}$ is $2.248{{m}^{2}}$ and that of ${{V}_{\max }}$ is $4.209{{m}^{2}}$.
Note: To convert between absolute uncertainty and percent uncertainty, we’ll use this formula (m = measurement, $\Delta u$ = absolute uncertainty):
$m\pm \Delta u=m\pm (\dfrac{\Delta u}{m}\times 100%)$)
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE