
The de-Broglie wavelength of an electron is the same as that of a 50keV X-ray photon. The ratio of the energy of the photon to the kinetic energy of the electron is (the energy equivalent of electron mass is 0.5MeV
A- 1:50
B- 1:20
C- 20:1
D- 50:1
Answer
528.6k+ views
Hint :As, in the question we need to find the ratio of the the energy of the photon to the kinetic energy of the electron, i.e., $ \dfrac{{{E}_{p}}}{{{E}_{e}}} $ . As, in the question, energy of photons is given and energy of electron mass is given. As, Kinetic energy of electron is calculated by $ {{E}_{e}}=\dfrac{{{h}^{2}}}{2m{{\lambda }^{2}}} $ , wavelength is also calculate by $ {{\lambda }_{\text{p}}}=\dfrac{hc}{E} $ , and the value of hc= 1240 ev nm. Using these all values the ratio can be calculated.
Complete Step By Step Answer:
Given, Energy of X-ray photon is 50 KeV and Energy equivalent of electron mass is 0.5 MeV.
As,
$ {{\text{E}}_{\text{p}}}=50\text{KeV}=5\times {{10}^{4}}\text{eV} $
$ {{\text{E}}_{\text{e}}}=\text{m}{{\text{c}}^{\text{2}}}=0.5\text{MeV}=0.5\times {{10}^{5}}\text{eV} $
As, Wavelength of the photon $ \left( {{\lambda }_{\text{photon}}}=\dfrac{hc}{E} \right) $ , as, the value of $ hc=1242\text{eV}\cdot \text{nm} $ and $ {{\text{E}}_{\text{p}}}=5\times {{10}^{4}}\text{eV} $ .
Use these values to find the value of wavelength of photons.
$ {{\lambda }_{\text{p}}}=\dfrac{hc}{E} \\
{{\lambda }_{\text{p}}}=\dfrac{1242}{5\times {{10}^{4}}} \\
{{\lambda }_{\text{p}}}=0.02484\,\text{nm} $
Therefore, the de-Broglie wavelength of an electron $ \lambda ={{\lambda }_{\text{p}}}=0.0248\,\text{nm} $ .
The kinetic energy of electron is given by,
$ {{E}_{e}}=\dfrac{{{h}^{2}}}{2m{{\lambda }^{2}}} $ , multiply and divide by $ {{c}^{2}} $
$ {{E}_{e}}=\dfrac{{{h}^{2}}{{c}^{2}}}{2m{{c}^{2}}{{\lambda }^{2}}} $
As, $ {{\text{E}}_{\text{e}}}=\text{m}{{\text{c}}^{\text{2}}}=0.5\times {{10}^{5}}\text{eV} $ and $ hc=1242\text{eV}\cdot \text{nm} $ , so use these values in the above formula and calculate the kinetic energy of photon.
$ {{E}_{{{e}^{-}}}}=\dfrac{{{h}^{2}}{{c}^{2}}}{2m{{c}^{2}}{{\lambda }^{2}}} \\
=\dfrac{{{\left( 1242 \right)}^{2}}}{2\left( 0.5\times {{10}^{5}} \right){{\left( 0.02484 \right)}^{2}}} \\
=2.51\times {{10}^{3}}\text{eV} \ $
So,
$ \dfrac{{{E}_{photon}}}{{{E}_{{{e}^{-}}}}}=\dfrac{5\times {{10}^{4}}}{2.51\times {{10}^{3}}}=20 $
So, the ratio of the energy of the photon to the kinetic energy of the electron is $ 20:1 $ .
Therefore, option C is correct.
Note :
The wavelength is dependent upon the frequency and the speed of the propagating wave. Frequency is the characteristic of the source which is producing the wave. The SI unit of the wavelength is metre and velocity of the wave is m/s while for the frequency it is to be taken in Hertz (hz) always.
Also, energy can be taken either in Joules or eV depending upon the demand of the question.
Complete Step By Step Answer:
Given, Energy of X-ray photon is 50 KeV and Energy equivalent of electron mass is 0.5 MeV.
As,
$ {{\text{E}}_{\text{p}}}=50\text{KeV}=5\times {{10}^{4}}\text{eV} $
$ {{\text{E}}_{\text{e}}}=\text{m}{{\text{c}}^{\text{2}}}=0.5\text{MeV}=0.5\times {{10}^{5}}\text{eV} $
As, Wavelength of the photon $ \left( {{\lambda }_{\text{photon}}}=\dfrac{hc}{E} \right) $ , as, the value of $ hc=1242\text{eV}\cdot \text{nm} $ and $ {{\text{E}}_{\text{p}}}=5\times {{10}^{4}}\text{eV} $ .
Use these values to find the value of wavelength of photons.
$ {{\lambda }_{\text{p}}}=\dfrac{hc}{E} \\
{{\lambda }_{\text{p}}}=\dfrac{1242}{5\times {{10}^{4}}} \\
{{\lambda }_{\text{p}}}=0.02484\,\text{nm} $
Therefore, the de-Broglie wavelength of an electron $ \lambda ={{\lambda }_{\text{p}}}=0.0248\,\text{nm} $ .
The kinetic energy of electron is given by,
$ {{E}_{e}}=\dfrac{{{h}^{2}}}{2m{{\lambda }^{2}}} $ , multiply and divide by $ {{c}^{2}} $
$ {{E}_{e}}=\dfrac{{{h}^{2}}{{c}^{2}}}{2m{{c}^{2}}{{\lambda }^{2}}} $
As, $ {{\text{E}}_{\text{e}}}=\text{m}{{\text{c}}^{\text{2}}}=0.5\times {{10}^{5}}\text{eV} $ and $ hc=1242\text{eV}\cdot \text{nm} $ , so use these values in the above formula and calculate the kinetic energy of photon.
$ {{E}_{{{e}^{-}}}}=\dfrac{{{h}^{2}}{{c}^{2}}}{2m{{c}^{2}}{{\lambda }^{2}}} \\
=\dfrac{{{\left( 1242 \right)}^{2}}}{2\left( 0.5\times {{10}^{5}} \right){{\left( 0.02484 \right)}^{2}}} \\
=2.51\times {{10}^{3}}\text{eV} \ $
So,
$ \dfrac{{{E}_{photon}}}{{{E}_{{{e}^{-}}}}}=\dfrac{5\times {{10}^{4}}}{2.51\times {{10}^{3}}}=20 $
So, the ratio of the energy of the photon to the kinetic energy of the electron is $ 20:1 $ .
Therefore, option C is correct.
Note :
The wavelength is dependent upon the frequency and the speed of the propagating wave. Frequency is the characteristic of the source which is producing the wave. The SI unit of the wavelength is metre and velocity of the wave is m/s while for the frequency it is to be taken in Hertz (hz) always.
Also, energy can be taken either in Joules or eV depending upon the demand of the question.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

