Answer
Verified
403.3k+ views
Hint:
Here, we will first simplify the denominator of the given fraction by applying the exponent and then multiply the terms hence obtained. Then we will divide the numerator by the denominator to make the fraction into decimal form. We will then check after how many decimal places the rational number terminates.
Complete step by step solution:
We will first apply the exponent in the denominator to make it a proper whole number.
We know that the cube of 2 is 8 and the square of 5 is 25.
So, applying the exponent on the terms of the denominator, we get
\[\dfrac{{11}}{{{2^3} \cdot {5^2}}} = \dfrac{{11}}{{8 \cdot 25}}\]
Now multiplying the terms in the denominator, we get
\[ \Rightarrow \dfrac{{11}}{{{2^3} \cdot {5^2}}} = \dfrac{{11}}{{200}}\]
On dividing 11 by 200, we get
\[ \Rightarrow \dfrac{{11}}{{{2^3} \cdot {5^2}}} = 0.055\]
The decimal expansion of the rational number is 0.055 and we can clearly see that it will terminate after three decimal places.
Hence, the correct option is C.
Note:
We can also vary our answer by using the following fact. We know that if a rational number is of form \[\dfrac{p}{q}\] and \[q\] can be expressed as \[{2^n}{5^m}\], then the rational number will terminate after \[n\] places, if \[n > m\] and the decimal expansion will terminate after \[m\] places, if \[m > n\].
Here the given rational number is \[\dfrac{{11}}{{{2^3} \cdot {5^2}}}\] and the denominator is of the form \[{2^n}{5^m}\]. We can see that the power of 2 is 3 and the power of 5 is 2. Therefore, it will terminate after three decimal places.
Here, we will first simplify the denominator of the given fraction by applying the exponent and then multiply the terms hence obtained. Then we will divide the numerator by the denominator to make the fraction into decimal form. We will then check after how many decimal places the rational number terminates.
Complete step by step solution:
We will first apply the exponent in the denominator to make it a proper whole number.
We know that the cube of 2 is 8 and the square of 5 is 25.
So, applying the exponent on the terms of the denominator, we get
\[\dfrac{{11}}{{{2^3} \cdot {5^2}}} = \dfrac{{11}}{{8 \cdot 25}}\]
Now multiplying the terms in the denominator, we get
\[ \Rightarrow \dfrac{{11}}{{{2^3} \cdot {5^2}}} = \dfrac{{11}}{{200}}\]
On dividing 11 by 200, we get
\[ \Rightarrow \dfrac{{11}}{{{2^3} \cdot {5^2}}} = 0.055\]
The decimal expansion of the rational number is 0.055 and we can clearly see that it will terminate after three decimal places.
Hence, the correct option is C.
Note:
We can also vary our answer by using the following fact. We know that if a rational number is of form \[\dfrac{p}{q}\] and \[q\] can be expressed as \[{2^n}{5^m}\], then the rational number will terminate after \[n\] places, if \[n > m\] and the decimal expansion will terminate after \[m\] places, if \[m > n\].
Here the given rational number is \[\dfrac{{11}}{{{2^3} \cdot {5^2}}}\] and the denominator is of the form \[{2^n}{5^m}\]. We can see that the power of 2 is 3 and the power of 5 is 2. Therefore, it will terminate after three decimal places.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers