The decimal expansion of rational numbers $\dfrac{{49}}{{40}}$ will terminate after how many places of decimal?
Answer
Verified
510.6k+ views
Hint: The decimal expansion of a number consists of a decimal point followed by several digits. Whenever we try to convert a fraction to numerical value, we get a decimal value.
Complete step-by-step answer:
The given rational number = $\dfrac{{49}}{{40}}$
Multiplying and dividing the above fraction with ‘25’.
$ \Rightarrow \dfrac{{49}}{{40}} \times \dfrac{{25}}{{25}}$
$ = \dfrac{{1225}}{{1000}}$
In the denominator we have 1000 (three zeros), so when dividing a number by thousand we get a decimal point followed by three digits.
$ = 1.225$
After the decimal point we got three digits.
$\therefore $ The given rational number $\dfrac{{49}}{{40}}$ terminates after 3 places of the decimal.
Note: Whenever we want to convert any rational number to a decimal value without using a calculator, we need to convert the denominator into a form of ${10^n}\left[ {n > 0} \right]$. If ‘k’ zeros are present in the denominator, then we will have ‘k’ digits after the decimal point in the numerator.
For example take $\dfrac{9}{{100}}$, this value equals 0.09, sometimes we may encounter non-terminating values after the decimal point, eg: $\dfrac{1}{3} = 0.33333333333.......$
Complete step-by-step answer:
The given rational number = $\dfrac{{49}}{{40}}$
Multiplying and dividing the above fraction with ‘25’.
$ \Rightarrow \dfrac{{49}}{{40}} \times \dfrac{{25}}{{25}}$
$ = \dfrac{{1225}}{{1000}}$
In the denominator we have 1000 (three zeros), so when dividing a number by thousand we get a decimal point followed by three digits.
$ = 1.225$
After the decimal point we got three digits.
$\therefore $ The given rational number $\dfrac{{49}}{{40}}$ terminates after 3 places of the decimal.
Note: Whenever we want to convert any rational number to a decimal value without using a calculator, we need to convert the denominator into a form of ${10^n}\left[ {n > 0} \right]$. If ‘k’ zeros are present in the denominator, then we will have ‘k’ digits after the decimal point in the numerator.
For example take $\dfrac{9}{{100}}$, this value equals 0.09, sometimes we may encounter non-terminating values after the decimal point, eg: $\dfrac{1}{3} = 0.33333333333.......$
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE