The degeneracy of hydrogen atom that has equal energy to \[\dfrac{{ - {R_H}}}{9}\] is:
[where \[{R_H}\] = Rydberg constant]
(A) 6
(B) 8
(C) 5
(D) 9
Answer
Verified
118.2k+ views
Hint: when understanding quantum mechanics, we understand that an energy level is said to be degenerate, if it is corresponding to two or more different measurable states of a given quantum system. On the other hand, the different states of a quantum system can be categorised as degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a particular energy level is known as the degree of degeneracy of the level
Formula Used: E = \[\dfrac{{ - {R_H}}}{{{n^2}}}\]
Complete Step-by-Step Solution:
In order to understand the degeneracy of the hydrogen atom in the given energy state, we need to first understand the orbital to which the given electron belongs to, the state in which it is present and the number of degenerate orbitals present in that state.
The energy has been given to be equal to \[\dfrac{{ - {R_H}}}{9}\].
But we know that, energy can be obtained using the formula:
E = \[\dfrac{{ - {R_H}}}{{{n^2}}}\] = \[\dfrac{{ - {R_H}}}{9}\]
Hence the value of n = 3.
This means that the electron belongs to the third orbital. Now in the third orbital, we have 3s, 3p and 3d subshells present. Now the quantum numbers associated with each of these subshells can be identified as:
3s: l = 0; m = 0; hence 3s has 1 orbital
3p: l = 1; m = -1, 0, +1; hence 3p has 3 orbitals
3d: l = 2; m = -2, -1, 0, +1, +2; hence 3d has 5 orbitals
Thus the total number of degenerate orbitals present in the third shell are 1 + 3 + 5 = 9 degenerate orbitals. Hence the degeneracy of the given hydrogen atom is 9.
Hence, Option D is the correct option.
Note: From Schrodinger’s wave equations, we can derive certain quantities that describe the size, shape and orientation in space of the orbitals of the atoms. These quantities are known as quantum numbers.
Formula Used: E = \[\dfrac{{ - {R_H}}}{{{n^2}}}\]
Complete Step-by-Step Solution:
In order to understand the degeneracy of the hydrogen atom in the given energy state, we need to first understand the orbital to which the given electron belongs to, the state in which it is present and the number of degenerate orbitals present in that state.
The energy has been given to be equal to \[\dfrac{{ - {R_H}}}{9}\].
But we know that, energy can be obtained using the formula:
E = \[\dfrac{{ - {R_H}}}{{{n^2}}}\] = \[\dfrac{{ - {R_H}}}{9}\]
Hence the value of n = 3.
This means that the electron belongs to the third orbital. Now in the third orbital, we have 3s, 3p and 3d subshells present. Now the quantum numbers associated with each of these subshells can be identified as:
3s: l = 0; m = 0; hence 3s has 1 orbital
3p: l = 1; m = -1, 0, +1; hence 3p has 3 orbitals
3d: l = 2; m = -2, -1, 0, +1, +2; hence 3d has 5 orbitals
Thus the total number of degenerate orbitals present in the third shell are 1 + 3 + 5 = 9 degenerate orbitals. Hence the degeneracy of the given hydrogen atom is 9.
Hence, Option D is the correct option.
Note: From Schrodinger’s wave equations, we can derive certain quantities that describe the size, shape and orientation in space of the orbitals of the atoms. These quantities are known as quantum numbers.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Chemistry In Hindi Chapter 7 Equilibrium
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Aqueous solution of HNO3 KOH CH3COOH CH3COONa of identical class 11 chemistry JEE_Main
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main