The density of a liquid is 1.2 g/mL. There are 35 drops in 2 mL. The number of molecules in 1 drop is (molecular weight of liquid =70):
(A) $\dfrac{{1.2}}{{35}}{N_A}$
(B) ${\left( {\dfrac{1}{{35}}{N_A}} \right)^2}$
(C) $\dfrac{{1.2}}{{{{(35)}^2}}}{N_A}$
(D) 1.2${N_A}$
Answer
Verified
472.8k+ views
Hint: The formula that relates the weight and the volume of the substance is
\[{\text{Density = }}\dfrac{{{\text{Weight}}}}{{{\text{Volume}}}}\]
The number of moles of the substance is the ratio of the weight of the substance to the molecular weight of the substance.
Complete step by step solution:
We are given to find the numbers of molecules in one drop of the liquid. For that, we need to know that weight of one drop of the liquid. We will find that by using the Avogadro number.
- It is given that there are 35 drops in 2 mL of the liquid. So, we can say that the volume of 1 drop of the liquid will be $\dfrac{2}{{35}}mL$.
- Now, we will find the weight of a drop of a liquid using the density of the liquid. We know that
\[{\text{Density = }}\dfrac{{{\text{Weight}}}}{{{\text{Volume}}}}\]
We are given that density is 1.2 g/mL. So, putting that in the above equation, we get
\[1.2 = \dfrac{{{\text{Weight}} \times {\text{35}}}}{2}\]
So,
\[{\text{Weight = }}\dfrac{{1.2 \times 2}}{{35}}g\]
Thus, we get the weight of a drop of the liquid. Now, we will use the fact that 1 mole of a substance will contain ${N_A}$ number of molecules.
- We are given that the molecular weight of the liquid is $70$ $gmmo{l^{ - 1}}$.
So, the number of moles of liquid present in a drop = $\dfrac{{{\text{Weight}}}}{{{\text{Molecular weight}}}} = \dfrac{{1.2 \times 2}}{{35 \times 70}} = \dfrac{{1.2}}{{{{(35)}^2}}}$
Now, 1 mole of a liquid contains ${N_A}$ number of molecules, so, $\dfrac{{1.2}}{{{{(35)}^2}}}$ moles will contain $\dfrac{{1.2}}{{{{(35)}^2}}}{N_A}$ number of molecules.
Thus, we can say that the correct answer is (C).
Note: Here, the answer in the options is given in a way that it includes ${N_A}$ which is Avogadro's number. So, we do not need to put the value of this number in the calculation and find the absolute value, instead, we need the answer that contains ${N_A}$. The value of ${N_A}$ is $6.022 \times {10^{23}}$.
\[{\text{Density = }}\dfrac{{{\text{Weight}}}}{{{\text{Volume}}}}\]
The number of moles of the substance is the ratio of the weight of the substance to the molecular weight of the substance.
Complete step by step solution:
We are given to find the numbers of molecules in one drop of the liquid. For that, we need to know that weight of one drop of the liquid. We will find that by using the Avogadro number.
- It is given that there are 35 drops in 2 mL of the liquid. So, we can say that the volume of 1 drop of the liquid will be $\dfrac{2}{{35}}mL$.
- Now, we will find the weight of a drop of a liquid using the density of the liquid. We know that
\[{\text{Density = }}\dfrac{{{\text{Weight}}}}{{{\text{Volume}}}}\]
We are given that density is 1.2 g/mL. So, putting that in the above equation, we get
\[1.2 = \dfrac{{{\text{Weight}} \times {\text{35}}}}{2}\]
So,
\[{\text{Weight = }}\dfrac{{1.2 \times 2}}{{35}}g\]
Thus, we get the weight of a drop of the liquid. Now, we will use the fact that 1 mole of a substance will contain ${N_A}$ number of molecules.
- We are given that the molecular weight of the liquid is $70$ $gmmo{l^{ - 1}}$.
So, the number of moles of liquid present in a drop = $\dfrac{{{\text{Weight}}}}{{{\text{Molecular weight}}}} = \dfrac{{1.2 \times 2}}{{35 \times 70}} = \dfrac{{1.2}}{{{{(35)}^2}}}$
Now, 1 mole of a liquid contains ${N_A}$ number of molecules, so, $\dfrac{{1.2}}{{{{(35)}^2}}}$ moles will contain $\dfrac{{1.2}}{{{{(35)}^2}}}{N_A}$ number of molecules.
Thus, we can say that the correct answer is (C).
Note: Here, the answer in the options is given in a way that it includes ${N_A}$ which is Avogadro's number. So, we do not need to put the value of this number in the calculation and find the absolute value, instead, we need the answer that contains ${N_A}$. The value of ${N_A}$ is $6.022 \times {10^{23}}$.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE