
The derivative of \[{\csc ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)\] with respect to \[\sqrt {1 - {x^2}} \] at \[x = \dfrac{1}{2}\] is
Answer
582.9k+ views
Hint: Here, we will take that \[h = {\csc ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)\] and \[g = \sqrt {1 - {x^2}} \]. Then we will use that when \[h\] is differentiated with respect to \[g\], we have to calculate the value of \[\dfrac{{dh}}{{dg}}\]. After differentiating \[h\] with respect to \[x\] and \[g\] with respect to \[x\], we will divide them to find the required value.
Complete step-by-step answer:
Let us assume that \[h = {\csc ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)\] and \[g = \sqrt {1 - {x^2}} \].
We know that when \[h\] is differentiated with respect to \[g\], we have to calculate the value of \[\dfrac{{dh}}{{dg}}\].
Differentiating the equation \[h\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\csc }^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)} \right)\]
Using the property, \[{\csc ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{1}{x}} \right)\] in the above equation, we get
\[
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left( {{{\sin }^{ - 1}}\left( {2{x^2} - 1} \right)} \right) \\
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left( {\dfrac{\pi }{2} - {{\cos }^{ - 1}}\left( {2{x^2} - 1} \right)} \right) \\
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left\{
\dfrac{\pi }{2} - 2{\cos ^{ - 1}}x{\text{ , if 0 < x < 1}} \\
\Rightarrow - \dfrac{{3\pi }}{2} + 2{\cos ^{ - 1}}x{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dx}} = \left\{
\dfrac{d}{{dx}}\left( {\dfrac{\pi }{2} - 2{{\cos }^{ - 1}}x} \right){\text{ , if 0 < x < 1}} \\
\dfrac{d}{{dx}}\left( { - \dfrac{{3\pi }}{2} + 2{{\cos }^{ - 1}}x} \right){\text{ , if - 1 < x < 0}} \\
\right. \\
\]
Using the value, \[\dfrac{d}{{dx}}{\cos ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}\] in the above equation, we get
\[ \Rightarrow \dfrac{{dh}}{{dx}} = \left\{
\dfrac{2}{{\sqrt {1 - {x^2}} }}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{\sqrt {1 - {x^2}} }}{\text{ , if - 1 < x < 0}} \\
\right.{\text{ ......eq.(1)}}\]
Differentiating the equation \[g\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dg}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt {1 - {x^2}} } \right)\]
Using the property, \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] in the above equation, we get
\[ \Rightarrow \dfrac{{dg}}{{dx}} = \dfrac{{ - x}}{{\sqrt {1 - {x^2}} }}{\text{ ......eq.(2)}}\]
Dividing the equation (1) by equation (2), we get
\[
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
\dfrac{2}{{\sqrt {1 - {x^2}} }} \times \dfrac{{\sqrt {1 - {x^2}} }}{{ - x}}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{\sqrt {1 - {x^2}} }} \times \dfrac{{\sqrt {1 - {x^2}} }}{{ - x}}{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
\dfrac{2}{{ - x}}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{ - x}}{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
- \dfrac{2}{x}{\text{ , if 0 < x < 1}} \\
\dfrac{2}{x}{\text{ , if - 1 < x < 0}} \\
\right. \\
\]
Since we know that \[0 < \dfrac{1}{2} < 1\], so it lies on the upper parts of the above equation.
Taking \[x = \dfrac{1}{2}\] in the above equation, we get
\[
\Rightarrow {\left. {\dfrac{{dh}}{{dg}}} \right|_{x = \dfrac{1}{2}}} = - \dfrac{2}{{\dfrac{1}{2}}} \\
\Rightarrow {\left. {\dfrac{{dh}}{{dg}}} \right|_{x = \dfrac{1}{2}}} = - 4 \\
\]
Note: You should be familiar with the basic properties of differentiation and trigonometric functions, like \[{\csc ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{1}{x}} \right)\] and \[\dfrac{d}{{dx}}{\csc ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}\]. Students get confused to find the derivative and end up computing with respect to \[x\], which is wrong. A function can only be differentiated with respect to another function if and only if both the functions are dependent on the same variable. The key point is to use the differentiation properly to find the final answer.
Complete step-by-step answer:
Let us assume that \[h = {\csc ^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)\] and \[g = \sqrt {1 - {x^2}} \].
We know that when \[h\] is differentiated with respect to \[g\], we have to calculate the value of \[\dfrac{{dh}}{{dg}}\].
Differentiating the equation \[h\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\csc }^{ - 1}}\left( {\dfrac{1}{{2{x^2} - 1}}} \right)} \right)\]
Using the property, \[{\csc ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{1}{x}} \right)\] in the above equation, we get
\[
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left( {{{\sin }^{ - 1}}\left( {2{x^2} - 1} \right)} \right) \\
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left( {\dfrac{\pi }{2} - {{\cos }^{ - 1}}\left( {2{x^2} - 1} \right)} \right) \\
\Rightarrow \dfrac{{dh}}{{dx}} = \dfrac{d}{x}\left\{
\dfrac{\pi }{2} - 2{\cos ^{ - 1}}x{\text{ , if 0 < x < 1}} \\
\Rightarrow - \dfrac{{3\pi }}{2} + 2{\cos ^{ - 1}}x{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dx}} = \left\{
\dfrac{d}{{dx}}\left( {\dfrac{\pi }{2} - 2{{\cos }^{ - 1}}x} \right){\text{ , if 0 < x < 1}} \\
\dfrac{d}{{dx}}\left( { - \dfrac{{3\pi }}{2} + 2{{\cos }^{ - 1}}x} \right){\text{ , if - 1 < x < 0}} \\
\right. \\
\]
Using the value, \[\dfrac{d}{{dx}}{\cos ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}\] in the above equation, we get
\[ \Rightarrow \dfrac{{dh}}{{dx}} = \left\{
\dfrac{2}{{\sqrt {1 - {x^2}} }}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{\sqrt {1 - {x^2}} }}{\text{ , if - 1 < x < 0}} \\
\right.{\text{ ......eq.(1)}}\]
Differentiating the equation \[g\] with respect to \[x\], we get
\[ \Rightarrow \dfrac{{dg}}{{dx}} = \dfrac{d}{{dx}}\left( {\sqrt {1 - {x^2}} } \right)\]
Using the property, \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] in the above equation, we get
\[ \Rightarrow \dfrac{{dg}}{{dx}} = \dfrac{{ - x}}{{\sqrt {1 - {x^2}} }}{\text{ ......eq.(2)}}\]
Dividing the equation (1) by equation (2), we get
\[
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
\dfrac{2}{{\sqrt {1 - {x^2}} }} \times \dfrac{{\sqrt {1 - {x^2}} }}{{ - x}}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{\sqrt {1 - {x^2}} }} \times \dfrac{{\sqrt {1 - {x^2}} }}{{ - x}}{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
\dfrac{2}{{ - x}}{\text{ , if 0 < x < 1}} \\
\dfrac{{ - 2}}{{ - x}}{\text{ , if - 1 < x < 0}} \\
\right. \\
\Rightarrow \dfrac{{dh}}{{dg}} = \left\{
- \dfrac{2}{x}{\text{ , if 0 < x < 1}} \\
\dfrac{2}{x}{\text{ , if - 1 < x < 0}} \\
\right. \\
\]
Since we know that \[0 < \dfrac{1}{2} < 1\], so it lies on the upper parts of the above equation.
Taking \[x = \dfrac{1}{2}\] in the above equation, we get
\[
\Rightarrow {\left. {\dfrac{{dh}}{{dg}}} \right|_{x = \dfrac{1}{2}}} = - \dfrac{2}{{\dfrac{1}{2}}} \\
\Rightarrow {\left. {\dfrac{{dh}}{{dg}}} \right|_{x = \dfrac{1}{2}}} = - 4 \\
\]
Note: You should be familiar with the basic properties of differentiation and trigonometric functions, like \[{\csc ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{1}{x}} \right)\] and \[\dfrac{d}{{dx}}{\csc ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}\]. Students get confused to find the derivative and end up computing with respect to \[x\], which is wrong. A function can only be differentiated with respect to another function if and only if both the functions are dependent on the same variable. The key point is to use the differentiation properly to find the final answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

