
The derivative of ${{\sec }^{-1}}\left( \dfrac{1}{2{{x}^{2}}-1} \right)$ with respect to $\sqrt{1-{{x}^{2}}}$ at $x=\dfrac{1}{2}$ is
A. $-4$
B. 4
C. 2
D. $-2$
Answer
496.8k+ views
Hint: We first define the chain rule and how the differentiation of composite function works. We differentiate the main function with respect to the intermediate function and then differentiation of the intermediate function with respect to $x$. We take multiplication of these two different differentiated values.
Complete step-by-step solution:
We need to find the derivative of ${{\sec }^{-1}}\left( \dfrac{1}{2{{x}^{2}}-1} \right)$ with respect to $\sqrt{1-{{x}^{2}}}$ at $x=\dfrac{1}{2}$ using chain rule.
We assume $x=\cos \alpha $ and by putting the value we get $2{{x}^{2}}-1=2{{\cos }^{2}}\alpha -1=\cos 2\alpha $.
So, ${{\sec }^{-1}}\left( \dfrac{1}{\cos 2\alpha } \right)={{\sec }^{-1}}\left( \sec 2\alpha \right)=2\alpha $.
From inverse law we get $\alpha ={{\cos }^{-1}}x$. So, $2\alpha =2{{\cos }^{-1}}x$.
Here we assume the function is $m\left( x \right)=2{{\cos }^{-1}}x$ and the other function is $n\left( x \right)=\sqrt{1-{{x}^{2}}}$.
We need to find ${{\left[ \dfrac{dm}{dn} \right]}_{x=\dfrac{1}{2}}}$. We express it as $\dfrac{dm}{dn}=\dfrac{dm}{dx}\times \dfrac{1}{\dfrac{dn}{dx}}$.
\[\dfrac{dm}{dx}=\dfrac{d}{dx}\left[ 2{{\cos }^{-1}}x \right]=-\dfrac{2}{\sqrt{1-{{x}^{2}}}}\]
\[\dfrac{dn}{dx}=\dfrac{d}{dx}\left[ \sqrt{1-{{x}^{2}}} \right]=\dfrac{-2x}{2\sqrt{1-{{x}^{2}}}}=-\dfrac{x}{\sqrt{1-{{x}^{2}}}}\]
We place the values of the differentiations and get
\[\begin{align}
& \dfrac{dm}{dn} \\
& =\dfrac{dm}{dx}\times \dfrac{1}{\dfrac{dn}{dx}} \\
& =\left( -\dfrac{2}{\sqrt{1-{{x}^{2}}}} \right)\times \left( \dfrac{1}{-\dfrac{x}{\sqrt{1-{{x}^{2}}}}} \right) \\
& =\dfrac{2\sqrt{1-{{x}^{2}}}}{x\sqrt{1-{{x}^{2}}}} \\
& =\dfrac{2}{x} \\
\end{align}\]
Now the value of ${{\left[ \dfrac{dm}{dn} \right]}_{x=\dfrac{1}{2}}}$ will be \[{{\left[ \dfrac{2}{x} \right]}_{x=\dfrac{1}{2}}}=\dfrac{2}{\dfrac{1}{2}}=4\]. The correct option is B.
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step-by-step solution:
We need to find the derivative of ${{\sec }^{-1}}\left( \dfrac{1}{2{{x}^{2}}-1} \right)$ with respect to $\sqrt{1-{{x}^{2}}}$ at $x=\dfrac{1}{2}$ using chain rule.
We assume $x=\cos \alpha $ and by putting the value we get $2{{x}^{2}}-1=2{{\cos }^{2}}\alpha -1=\cos 2\alpha $.
So, ${{\sec }^{-1}}\left( \dfrac{1}{\cos 2\alpha } \right)={{\sec }^{-1}}\left( \sec 2\alpha \right)=2\alpha $.
From inverse law we get $\alpha ={{\cos }^{-1}}x$. So, $2\alpha =2{{\cos }^{-1}}x$.
Here we assume the function is $m\left( x \right)=2{{\cos }^{-1}}x$ and the other function is $n\left( x \right)=\sqrt{1-{{x}^{2}}}$.
We need to find ${{\left[ \dfrac{dm}{dn} \right]}_{x=\dfrac{1}{2}}}$. We express it as $\dfrac{dm}{dn}=\dfrac{dm}{dx}\times \dfrac{1}{\dfrac{dn}{dx}}$.
\[\dfrac{dm}{dx}=\dfrac{d}{dx}\left[ 2{{\cos }^{-1}}x \right]=-\dfrac{2}{\sqrt{1-{{x}^{2}}}}\]
\[\dfrac{dn}{dx}=\dfrac{d}{dx}\left[ \sqrt{1-{{x}^{2}}} \right]=\dfrac{-2x}{2\sqrt{1-{{x}^{2}}}}=-\dfrac{x}{\sqrt{1-{{x}^{2}}}}\]
We place the values of the differentiations and get
\[\begin{align}
& \dfrac{dm}{dn} \\
& =\dfrac{dm}{dx}\times \dfrac{1}{\dfrac{dn}{dx}} \\
& =\left( -\dfrac{2}{\sqrt{1-{{x}^{2}}}} \right)\times \left( \dfrac{1}{-\dfrac{x}{\sqrt{1-{{x}^{2}}}}} \right) \\
& =\dfrac{2\sqrt{1-{{x}^{2}}}}{x\sqrt{1-{{x}^{2}}}} \\
& =\dfrac{2}{x} \\
\end{align}\]
Now the value of ${{\left[ \dfrac{dm}{dn} \right]}_{x=\dfrac{1}{2}}}$ will be \[{{\left[ \dfrac{2}{x} \right]}_{x=\dfrac{1}{2}}}=\dfrac{2}{\dfrac{1}{2}}=4\]. The correct option is B.
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

