Answer
Verified
498.3k+ views
Hint: Differential coefficient is nothing but finding out the derivative of a function with respect to the function which is given.
Complete step-by-step answer:
We have to find out the differential coefficient of ${\log _{10}}x$ with respect to ${\log _x}10$
Let us consider y=${\log _{10}}x$ and z= ${\log _x}10$
So, as per the question ,we have to find out the derivative of y with respect to z
So, we have to find $\dfrac{{dy}}{{dz}}$
Since, we cannot find out the value of $\dfrac{{dy}}{{dz}}$directly let’s multiply y and z
So, we get yz=(${\log _{10}}x$)(${\log _x}10$)
Now, let’s make use of the formula ${\log _b}a = \dfrac{{\log a}}{{\log b}}$ and express yz in this form
So, we get $yz = \dfrac{{\log x}}{{\log 10}} \times \dfrac{{\log 10}}{{\log x}} = 1$
So, we have got yz=1
From this, we get $y = \dfrac{1}{z}$
Now, let us differentiate y with respect to z
So, we get $\dfrac{{dy}}{{dz}} = - \dfrac{1}{{{z^2}}}\left( {\because \dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}} \right)$
The value of $\dfrac{1}{z} = y$
So, we get $\dfrac{{dy}}{{dz}}$=$ - {y^2} = - {({\log _{10}}x)^2}$
Since $\dfrac{1}{z} = y$
So, option B is the correct answer for this question
Note: Make use of the appropriate formula of logarithms wherever needed and solve the question and also give importance to the function with respect to which the given has to be differentiated.
Complete step-by-step answer:
We have to find out the differential coefficient of ${\log _{10}}x$ with respect to ${\log _x}10$
Let us consider y=${\log _{10}}x$ and z= ${\log _x}10$
So, as per the question ,we have to find out the derivative of y with respect to z
So, we have to find $\dfrac{{dy}}{{dz}}$
Since, we cannot find out the value of $\dfrac{{dy}}{{dz}}$directly let’s multiply y and z
So, we get yz=(${\log _{10}}x$)(${\log _x}10$)
Now, let’s make use of the formula ${\log _b}a = \dfrac{{\log a}}{{\log b}}$ and express yz in this form
So, we get $yz = \dfrac{{\log x}}{{\log 10}} \times \dfrac{{\log 10}}{{\log x}} = 1$
So, we have got yz=1
From this, we get $y = \dfrac{1}{z}$
Now, let us differentiate y with respect to z
So, we get $\dfrac{{dy}}{{dz}} = - \dfrac{1}{{{z^2}}}\left( {\because \dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}} \right)$
The value of $\dfrac{1}{z} = y$
So, we get $\dfrac{{dy}}{{dz}}$=$ - {y^2} = - {({\log _{10}}x)^2}$
Since $\dfrac{1}{z} = y$
So, option B is the correct answer for this question
Note: Make use of the appropriate formula of logarithms wherever needed and solve the question and also give importance to the function with respect to which the given has to be differentiated.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India
Write a letter to the principal requesting him to grant class 10 english CBSE