Answer
Verified
487.5k+ views
Hint: In this question we have been given an equation and we need to obtain the differential equation that will be obtained by eliminating A and B. Now we have to eliminate two variables so we have to differentiate this equation twice. Use this concept to get the answer.
Complete step-by-step answer:
Given equation is
$y = A\cos \omega t + B\sin \omega t$…………………. (1)
Now differentiate this equation w.r.t. t then we have,
$\dfrac{{dy}}{{dt}} = y' = A\dfrac{d}{{dt}}\left( {\cos \omega t} \right) + B\dfrac{d}{{dt}}\left( {\sin \omega t} \right)$
Now apply the differentiation of cosine and sine we have,
$ \Rightarrow y' = A\left( { - \sin \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right) + B\left( {\cos \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right)$
And we all know differentiation of $\omega t$ w.r.t. t is $\omega $.
$ \Rightarrow y' = A\left( { - \omega \sin \omega t} \right) + B\left( {\omega \cos \omega t} \right)$
$ \Rightarrow y' = - A\omega \sin \omega t + B\omega \cos \omega t$
Now again differentiate this equation w.r.t. t we have,
$ \Rightarrow \dfrac{d}{{dt}}y' = y'' = - A\omega \left( {\dfrac{d}{{dt}}\sin \omega t} \right) + B\omega \left( {\dfrac{d}{{dt}}\cos \omega t} \right)$
Now again apply the differentiation of cosine and sine we have,
$ \Rightarrow y'' = - A\omega \left( {\cos \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right) + B\omega \left( { - \sin \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right)$
$ \Rightarrow y'' = - A\omega \left( {\omega \cos \omega t} \right) + B\omega \left( { - \omega \sin \omega t} \right)$
Now simplify this equation we have,
$ \Rightarrow y'' = - A{\omega ^2}\cos \omega t - B{\omega ^2}\sin \omega t$
$ \Rightarrow y'' = - {\omega ^2}\left( {A\cos \omega t + B\sin \omega t} \right)$
Now from equation (1) we have,
$ \Rightarrow y'' = - {\omega ^2}y$
$ \Rightarrow y'' + {\omega ^2}y = 0$
So, this is the required differential equation.
Hence option (b) is correct.
Note: Whenever we face such types of problems the key concept is to know that the total number of variables that has to be eliminated is the number of times we have to differentiate that given equation. Differentiation and simplification alongside will get you the required differential equation.
Complete step-by-step answer:
Given equation is
$y = A\cos \omega t + B\sin \omega t$…………………. (1)
Now differentiate this equation w.r.t. t then we have,
$\dfrac{{dy}}{{dt}} = y' = A\dfrac{d}{{dt}}\left( {\cos \omega t} \right) + B\dfrac{d}{{dt}}\left( {\sin \omega t} \right)$
Now apply the differentiation of cosine and sine we have,
$ \Rightarrow y' = A\left( { - \sin \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right) + B\left( {\cos \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right)$
And we all know differentiation of $\omega t$ w.r.t. t is $\omega $.
$ \Rightarrow y' = A\left( { - \omega \sin \omega t} \right) + B\left( {\omega \cos \omega t} \right)$
$ \Rightarrow y' = - A\omega \sin \omega t + B\omega \cos \omega t$
Now again differentiate this equation w.r.t. t we have,
$ \Rightarrow \dfrac{d}{{dt}}y' = y'' = - A\omega \left( {\dfrac{d}{{dt}}\sin \omega t} \right) + B\omega \left( {\dfrac{d}{{dt}}\cos \omega t} \right)$
Now again apply the differentiation of cosine and sine we have,
$ \Rightarrow y'' = - A\omega \left( {\cos \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right) + B\omega \left( { - \sin \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right)$
$ \Rightarrow y'' = - A\omega \left( {\omega \cos \omega t} \right) + B\omega \left( { - \omega \sin \omega t} \right)$
Now simplify this equation we have,
$ \Rightarrow y'' = - A{\omega ^2}\cos \omega t - B{\omega ^2}\sin \omega t$
$ \Rightarrow y'' = - {\omega ^2}\left( {A\cos \omega t + B\sin \omega t} \right)$
Now from equation (1) we have,
$ \Rightarrow y'' = - {\omega ^2}y$
$ \Rightarrow y'' + {\omega ^2}y = 0$
So, this is the required differential equation.
Hence option (b) is correct.
Note: Whenever we face such types of problems the key concept is to know that the total number of variables that has to be eliminated is the number of times we have to differentiate that given equation. Differentiation and simplification alongside will get you the required differential equation.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE