
The dimensional formula of $k$ (Coulomb’s Constant) is _________. Take I as the dimension of current.
(A) ${M^{ - 1}}{L^2}{T^0}{I^{ - 2}}$
(B) ${M^1}{L^3}{T^4}{I^1}$
(C) ${M^1}{L^3}{T^{ - 4}}{I^{ - 2}}$
(D) ${M^1}{L^{ - 3}}{T^4}{I^2}$
Answer
216.3k+ views
Hint There can be two ways to approach the solution, first, if you know the dimensional formula of $\varepsilon $ (permittivity of free space), just inverse the dimensional formula since the relation between $k$ and $\varepsilon $ is given as:
$k = \dfrac{1}{{4\pi \varepsilon }}$
Other than that, you can use the relation between the force between two charged particles at rest, lying at a distance of $r$ from each other with charges ${q_1}$ and ${q_2}$ . The relation is:
$F = k\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Take the dimensional formula of charge as: ${I^1}{T^1}$
Complete step by step answer
As explained in the hint section of the solution to the asked question, we will approach the solution by finding out the dimensional formula of Coulomb’s Constant using the relation between force, distance and charges.
The relation is given as:
$F = k\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
As we already know, the SI unit of force is $N$ and the dimensional formula is nothing but: $\left[ {{M^1}{L^1}{T^{ - 2}}} \right]$
On the other hand, the dimensional formula of the distance, as the denominator term on the right-hand side, $r$ is:
$\left[ {{L^1}} \right]$
The dimensional formula of charge is already told to be $\left[ {{I^1}{T^1}} \right]$
Now, if we perform transposition in the equation, we get:
$k = \dfrac{{F{r^2}}}{{{q_1}{q_2}}}$
Substituting the quantities with their dimensional formulae, we get;
$k = \dfrac{{\left[ {{M^1}{L^1}{T^{ - 2}}} \right]{{\left[ {{L^1}} \right]}^2}}}{{\left[ {{I^1}{T^1}} \right]\left[ {{I^1}{T^1}} \right]}}$
If we simplify the above-mentioned term on the right-hand side of the equation, we get:
$k = \left[ {{M^1}{L^3}{T^{ - 4}}{I^{ - 2}}} \right]$
Hence, the dimensional formula of $k$ (Coulomb’s Constant) is: $\left[ {{M^1}{L^3}{T^{ - 4}}{I^{ - 2}}} \right]$
As we can see, this matches with the dimensional formula given in the option (C). Hence,
option (C) is the correct answer to the question.
Note A major mistake that students make is that they take the dimension of charge exactly as $I$ instead of ${I^1}{T^1}$ . Think of it as the equation of charge, $Q = IT$ Where, $Q$ is the charge passing through a particular cross-sectional area., $I$ is the current flowing through the cross-sectional area and $T$ is the time for which the current flowed through the cross-sectional area.
$k = \dfrac{1}{{4\pi \varepsilon }}$
Other than that, you can use the relation between the force between two charged particles at rest, lying at a distance of $r$ from each other with charges ${q_1}$ and ${q_2}$ . The relation is:
$F = k\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
Take the dimensional formula of charge as: ${I^1}{T^1}$
Complete step by step answer
As explained in the hint section of the solution to the asked question, we will approach the solution by finding out the dimensional formula of Coulomb’s Constant using the relation between force, distance and charges.
The relation is given as:
$F = k\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
As we already know, the SI unit of force is $N$ and the dimensional formula is nothing but: $\left[ {{M^1}{L^1}{T^{ - 2}}} \right]$
On the other hand, the dimensional formula of the distance, as the denominator term on the right-hand side, $r$ is:
$\left[ {{L^1}} \right]$
The dimensional formula of charge is already told to be $\left[ {{I^1}{T^1}} \right]$
Now, if we perform transposition in the equation, we get:
$k = \dfrac{{F{r^2}}}{{{q_1}{q_2}}}$
Substituting the quantities with their dimensional formulae, we get;
$k = \dfrac{{\left[ {{M^1}{L^1}{T^{ - 2}}} \right]{{\left[ {{L^1}} \right]}^2}}}{{\left[ {{I^1}{T^1}} \right]\left[ {{I^1}{T^1}} \right]}}$
If we simplify the above-mentioned term on the right-hand side of the equation, we get:
$k = \left[ {{M^1}{L^3}{T^{ - 4}}{I^{ - 2}}} \right]$
Hence, the dimensional formula of $k$ (Coulomb’s Constant) is: $\left[ {{M^1}{L^3}{T^{ - 4}}{I^{ - 2}}} \right]$
As we can see, this matches with the dimensional formula given in the option (C). Hence,
option (C) is the correct answer to the question.
Note A major mistake that students make is that they take the dimension of charge exactly as $I$ instead of ${I^1}{T^1}$ . Think of it as the equation of charge, $Q = IT$ Where, $Q$ is the charge passing through a particular cross-sectional area., $I$ is the current flowing through the cross-sectional area and $T$ is the time for which the current flowed through the cross-sectional area.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

Two identical balls are projected one vertically up class 11 physics JEE_MAIN

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

Work Energy and Power Class 11 Physics Chapter 5 CBSE Notes - 2025-26

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

