The drift velocity of free electrons in a conductor is v, when a current. I is flowing in it if both the radius and current are doubled, then drift velocity will be.
A. \[\dfrac{v}{4}\]
B. \[\dfrac{v}{2}\]
C. \[2v\]
D. \[4v\]
Answer
Verified
116.4k+ views
Hint:The drift velocity is the rate of distance covered by the charge particle between two consecutive collisions from neighbouring atoms in an atom.
Formula used:
\[{v_d} = \dfrac{J}{{ne}}\]
where \[{v_d}\] is the drift velocity, \[J\] is the current density, n is the number of free electrons per unit volume and e is the charge on the electron.
Complete step by step solution:
When potential is applied across the wire then there is an electric field generated inside the wire which applies force on the free electrons. The applied force on the free electrons makes them move inside the wire. The average velocity gained by the free electron is called the drift velocity of the electron. Using the formula of the drift velocity,
\[{v_d} = \dfrac{J}{{ne}}\]
As the J is the current density of the wire, so it is equal to the electric current flowing per unit cross-sectional area of the wire,
\[J = \dfrac{i}{A}\]
On substituting the expression for the current density in the formula of drift velocity, we get
\[{v_d} = \dfrac{i}{{neA}}\]
\[\Rightarrow {v_d} = \dfrac{i}{{ne\pi {r^2}}}\]
It is given that both the current and the radius get doubled.
\[{i_2} = 2{i_1}\]
\[\Rightarrow {r_2} = 2{r_1}\]
The initial drift velocity is given as v,
\[v = \dfrac{{{i_1}}}{{ne\pi r_1^2}}\]
Let the final drift velocity is \[{v_2}\].
\[{v_2} = \dfrac{{{i_2}}}{{ne\pi r_2^2}} \\ \]
\[\Rightarrow {v_2} = \dfrac{{2{i_1}}}{{ne\pi {{\left( {2{r_1}} \right)}^2}}} \\ \]
\[\Rightarrow {v_2} = \dfrac{{2{i_1}}}{{4ne\pi r_1^2}} \\ \]
\[\Rightarrow {v_2} = \dfrac{1}{2}\left( {\dfrac{{{i_1}}}{{ne\pi r_1^2}}} \right) \\ \]
\[\therefore {v_2} = \dfrac{v}{2}\]
Hence, the final drift velocity is \[\dfrac{v}{2}\].
Therefore, the correct option is B.
Note: The drift velocity depends on the cross-section of the wire (A), the number of free electrons per unit volume (n) and the magnitude of the electric current. It does not depend upon the length of the wire.
Formula used:
\[{v_d} = \dfrac{J}{{ne}}\]
where \[{v_d}\] is the drift velocity, \[J\] is the current density, n is the number of free electrons per unit volume and e is the charge on the electron.
Complete step by step solution:
When potential is applied across the wire then there is an electric field generated inside the wire which applies force on the free electrons. The applied force on the free electrons makes them move inside the wire. The average velocity gained by the free electron is called the drift velocity of the electron. Using the formula of the drift velocity,
\[{v_d} = \dfrac{J}{{ne}}\]
As the J is the current density of the wire, so it is equal to the electric current flowing per unit cross-sectional area of the wire,
\[J = \dfrac{i}{A}\]
On substituting the expression for the current density in the formula of drift velocity, we get
\[{v_d} = \dfrac{i}{{neA}}\]
\[\Rightarrow {v_d} = \dfrac{i}{{ne\pi {r^2}}}\]
It is given that both the current and the radius get doubled.
\[{i_2} = 2{i_1}\]
\[\Rightarrow {r_2} = 2{r_1}\]
The initial drift velocity is given as v,
\[v = \dfrac{{{i_1}}}{{ne\pi r_1^2}}\]
Let the final drift velocity is \[{v_2}\].
\[{v_2} = \dfrac{{{i_2}}}{{ne\pi r_2^2}} \\ \]
\[\Rightarrow {v_2} = \dfrac{{2{i_1}}}{{ne\pi {{\left( {2{r_1}} \right)}^2}}} \\ \]
\[\Rightarrow {v_2} = \dfrac{{2{i_1}}}{{4ne\pi r_1^2}} \\ \]
\[\Rightarrow {v_2} = \dfrac{1}{2}\left( {\dfrac{{{i_1}}}{{ne\pi r_1^2}}} \right) \\ \]
\[\therefore {v_2} = \dfrac{v}{2}\]
Hence, the final drift velocity is \[\dfrac{v}{2}\].
Therefore, the correct option is B.
Note: The drift velocity depends on the cross-section of the wire (A), the number of free electrons per unit volume (n) and the magnitude of the electric current. It does not depend upon the length of the wire.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Charging and Discharging of Capacitor
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Physics Average Value and RMS Value JEE Main 2025
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment