The ${{d}_{{{x}^{2}}-{{y}^{2}}}}$ and ${{d}_{{{z}^{2}}}}$ orbitals are directed along with a set of mutually perpendicular x,y, and z-axis and are called ${{e}_{g}}$ orbitals. If true enter 1, or else enter 0.
Answer
Verified
477.9k+ views
Hint: Five degenerate d-orbitals of the central metal cation in the presence of four or six ligands in tetrahedral or octahedral complexes are assumed hypothetically that they undergo splitting into two degenerate orbitals, that is ${{t}_{2g}}$ and ${{e}_{g}}$ orbitals.
Complete step by step answer:
-The region in which the probability of finding an electron is the highest is known as an orbital. Smaller the size of the orbital means that there is a greater chance of getting an electron near the nucleus.
-There are four different types of orbitals: s-orbital; p-orbital; d-orbital and f-orbital.
-The magnetic quantum number values for d-orbitals are given as -2, -1, 0, 1, 2. Hence we can say that the d-orbital has five sub-orbitals.
-The five sub-orbitals of d-orbitals are designated as - ${{d}_{xy}},{{d}_{yz}},{{d}_{xz}},{{d}_{{{x}^{2}}-{{y}^{2}}}},\text{ and }{{d}_{{{z}^{2}}}}$ .
-Out of these five orbitals, the shapes \[{{d}_{xy}},{{d}_{yz}},{{d}_{xz}}\text{ and }{{\text{d}}_{{{x}^{2}}-{{y}^{2}}}}\]are similar to each other but are different from \[{{d}_{{{z}^{2}}}}\]sub-orbital, whereas the energy of all the fiver d-sub orbitals is the same.
-The set of orbitals whose lobes lie in between the axis and are called non-axial orbitals. According to group theory, these non-axial orbitals are called ${{t}_{2g}}$ orbitals, where ‘t’ refers to the triply degenerate set.
-The set of orbitals whose lobes line along the axes are called axial orbitals. According to group theory, these axial orbitals are called ${{e}_{g}}$ orbitals where ‘e’ refers to the doubly degenerate set.
-${{d}_{xy}},{{d}_{yz,}}\text{ and }{{d}_{zx}}$ are called ${{t}_{2g}}$ set of orbitals, while ${{d}_{{{z}^{2}}}}\text{ and }{{d}_{{{x}^{2}}-{{y}^{2}}}}$ are ${{e}_{g}}$ set of orbitals.
-Hence, it is true that the ${{d}_{{{x}^{2}}-{{y}^{2}}}}$ and ${{d}_{{{z}^{2}}}}$ orbitals are directed along with a set of mutually perpendicular x,y, and z-axis.
So, the statement in the question is true.
Note: Crystal field theory is a theory that describes the breaking of degeneracies of electronic d-orbitals due to the static electric field produced by ligands. The electrons in the d-orbitals of the central metal atom in a coordination complex repel the electrons in the ligand due to the repulsion between the like charges. Thus the d-orbitals closer to the ligands attain higher energy while those away from the ligands attain the lower splitting energy.
where,
(a) Five degenerate d-orbitals on the central metal cation before the approach of ligands
(b) Hypothetical degenerate d-orbitals at a higher energy level
(c) Splitting of degenerate d-orbitals into ${{t}_{2g}}$ and ${{e}_{g}}$ orbitals.
Complete step by step answer:
-The region in which the probability of finding an electron is the highest is known as an orbital. Smaller the size of the orbital means that there is a greater chance of getting an electron near the nucleus.
-There are four different types of orbitals: s-orbital; p-orbital; d-orbital and f-orbital.
-The magnetic quantum number values for d-orbitals are given as -2, -1, 0, 1, 2. Hence we can say that the d-orbital has five sub-orbitals.
-The five sub-orbitals of d-orbitals are designated as - ${{d}_{xy}},{{d}_{yz}},{{d}_{xz}},{{d}_{{{x}^{2}}-{{y}^{2}}}},\text{ and }{{d}_{{{z}^{2}}}}$ .
-Out of these five orbitals, the shapes \[{{d}_{xy}},{{d}_{yz}},{{d}_{xz}}\text{ and }{{\text{d}}_{{{x}^{2}}-{{y}^{2}}}}\]are similar to each other but are different from \[{{d}_{{{z}^{2}}}}\]sub-orbital, whereas the energy of all the fiver d-sub orbitals is the same.
-The set of orbitals whose lobes lie in between the axis and are called non-axial orbitals. According to group theory, these non-axial orbitals are called ${{t}_{2g}}$ orbitals, where ‘t’ refers to the triply degenerate set.
-The set of orbitals whose lobes line along the axes are called axial orbitals. According to group theory, these axial orbitals are called ${{e}_{g}}$ orbitals where ‘e’ refers to the doubly degenerate set.
-${{d}_{xy}},{{d}_{yz,}}\text{ and }{{d}_{zx}}$ are called ${{t}_{2g}}$ set of orbitals, while ${{d}_{{{z}^{2}}}}\text{ and }{{d}_{{{x}^{2}}-{{y}^{2}}}}$ are ${{e}_{g}}$ set of orbitals.
-Hence, it is true that the ${{d}_{{{x}^{2}}-{{y}^{2}}}}$ and ${{d}_{{{z}^{2}}}}$ orbitals are directed along with a set of mutually perpendicular x,y, and z-axis.
So, the statement in the question is true.
Note: Crystal field theory is a theory that describes the breaking of degeneracies of electronic d-orbitals due to the static electric field produced by ligands. The electrons in the d-orbitals of the central metal atom in a coordination complex repel the electrons in the ligand due to the repulsion between the like charges. Thus the d-orbitals closer to the ligands attain higher energy while those away from the ligands attain the lower splitting energy.
where,
(a) Five degenerate d-orbitals on the central metal cation before the approach of ligands
(b) Hypothetical degenerate d-orbitals at a higher energy level
(c) Splitting of degenerate d-orbitals into ${{t}_{2g}}$ and ${{e}_{g}}$ orbitals.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE