Answer
Verified
465.9k+ views
- Hint: First let us learn about electric dipole and the net field created due to the dipole. An electric dipole deals with the separation of the positive and negative charges in an electromagnetic system. A pair of electric charges of equal magnitude but opposite signs separated by some small distance is an example for electric dipole.
Complete step-by-step solution -
We know that an electric charge produces an electric field around it. This electric field magnitude decreases with increase in distance from the charge producing that field. Hence, we can say that more the distance from the charged particle, less the magnitude of the electric field. The electric field at a point due to a charge is given by:
$E=\dfrac{kq}{{{r}^{2}}}$ , where E is the electrical field at the point, q is the charge, and r is the distance between the points.
Two charges with equal magnitude and opposite charge separated by a distance is known as Electric dipole. The distance between the two oppositely charged particles is extremely small (assumed to be 2d) that both the electric fields produced will combine to produce net electric field. The center of the electric dipole is defined as the midpoint of the imaginary line between the two opposite charges. The axis of the dipole is the line joining both the charges. Refer to the figure.
The electric field due to an electric dipole at a distance r from its center in axial position is,
\[\begin{align}
& E=\dfrac{kq}{{{(r-d)}^{2}}}-\dfrac{kq}{{{(r+d)}^{2}}}=\dfrac{kq[{{(r+d)}^{2}}-{{(r-d)}^{2}}]}{{{(r+d)}^{2}}{{(r-d)}^{2}}} \\
& \Rightarrow \dfrac{kq[(r-d+r+d)(r+d-r+d)]}{{{(r+d)}^{2}}{{(r-d)}^{2}}}=\dfrac{kq(2r)(2d)}{{{(r+d)}^{2}}{{(r-d)}^{2}}} \\
& \text{Since, }d << r: \\
& E=\dfrac{kq(2r)(2d)}{{{r}^{4}}}=\dfrac{2kp}{{{r}^{3}}} \\
\end{align}\] … (1)
Where, \[k=9\times {{10}^{9}}\dfrac{N{{m}^{2}}}{{{C}^{2}}}\] is a constant. p is the value of dipole moment which is equal to the product of distance between the charges and magnitude of one of the charges.
$p=2qd$
The perpendicular axis of the dipole is the line perpendicular to the axial plane and passing through the midpoint of the dipole. Now, when the dipole is rotated by then the electric field (say $E'$ ) is given by:
\[\begin{align}
& E'=-\dfrac{2kq\sin \theta }{({{r}^{2}}+{{d}^{2}})}=-\dfrac{2kq}{({{r}^{2}}+{{d}^{2}})}\dfrac{d}{{{({{r}^{2}}+{{d}^{2}})}^{\dfrac{1}{2}}}} \\
& \text{Since, }d << r \\
& \Rightarrow E'=-\dfrac{kq(2d)}{{{r}^{3}}}=-\dfrac{kp}{{{r}^{3}}} \\
\end{align}\]… (2)
Compare equation (1) and (2) to find out that $E'=\dfrac{E}{2}$
Therefore, the correct answer is option (c).
Note: You have to be clear that the distance between the opposite charges is very less when compared to r in the question. Don't confuse that electric field and dipole moment are scalars as only magnitude is mentioned in the answer. Both electric field and dipole moments are vector quantities.
Complete step-by-step solution -
We know that an electric charge produces an electric field around it. This electric field magnitude decreases with increase in distance from the charge producing that field. Hence, we can say that more the distance from the charged particle, less the magnitude of the electric field. The electric field at a point due to a charge is given by:
$E=\dfrac{kq}{{{r}^{2}}}$ , where E is the electrical field at the point, q is the charge, and r is the distance between the points.
Two charges with equal magnitude and opposite charge separated by a distance is known as Electric dipole. The distance between the two oppositely charged particles is extremely small (assumed to be 2d) that both the electric fields produced will combine to produce net electric field. The center of the electric dipole is defined as the midpoint of the imaginary line between the two opposite charges. The axis of the dipole is the line joining both the charges. Refer to the figure.
The electric field due to an electric dipole at a distance r from its center in axial position is,
\[\begin{align}
& E=\dfrac{kq}{{{(r-d)}^{2}}}-\dfrac{kq}{{{(r+d)}^{2}}}=\dfrac{kq[{{(r+d)}^{2}}-{{(r-d)}^{2}}]}{{{(r+d)}^{2}}{{(r-d)}^{2}}} \\
& \Rightarrow \dfrac{kq[(r-d+r+d)(r+d-r+d)]}{{{(r+d)}^{2}}{{(r-d)}^{2}}}=\dfrac{kq(2r)(2d)}{{{(r+d)}^{2}}{{(r-d)}^{2}}} \\
& \text{Since, }d << r: \\
& E=\dfrac{kq(2r)(2d)}{{{r}^{4}}}=\dfrac{2kp}{{{r}^{3}}} \\
\end{align}\] … (1)
Where, \[k=9\times {{10}^{9}}\dfrac{N{{m}^{2}}}{{{C}^{2}}}\] is a constant. p is the value of dipole moment which is equal to the product of distance between the charges and magnitude of one of the charges.
$p=2qd$
The perpendicular axis of the dipole is the line perpendicular to the axial plane and passing through the midpoint of the dipole. Now, when the dipole is rotated by then the electric field (say $E'$ ) is given by:
\[\begin{align}
& E'=-\dfrac{2kq\sin \theta }{({{r}^{2}}+{{d}^{2}})}=-\dfrac{2kq}{({{r}^{2}}+{{d}^{2}})}\dfrac{d}{{{({{r}^{2}}+{{d}^{2}})}^{\dfrac{1}{2}}}} \\
& \text{Since, }d << r \\
& \Rightarrow E'=-\dfrac{kq(2d)}{{{r}^{3}}}=-\dfrac{kp}{{{r}^{3}}} \\
\end{align}\]… (2)
Compare equation (1) and (2) to find out that $E'=\dfrac{E}{2}$
Therefore, the correct answer is option (c).
Note: You have to be clear that the distance between the opposite charges is very less when compared to r in the question. Don't confuse that electric field and dipole moment are scalars as only magnitude is mentioned in the answer. Both electric field and dipole moments are vector quantities.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE