Answer
Verified
439.5k+ views
Hint:Electric field is defined as the electric force per unit charge and the direction of the electric field is taken as the direction of the force that is applied on the positive test charge. The electric field is proportional to the charge and inversely proportional to the distance. The electric field will continue to decrease as a charge is moved further away from the field.
Complete step by step Solution:
Find the magnitude of the charge Q:
$E = \dfrac{{KQ}}{r}$ ;
Here:
E = Electric Field
K = Constant
Q = Charge
r = Distance
We have been given all the values put in the above equation:
$E = \dfrac{{KQ}}{r}$
Write the above equation in terms of Q:
$E = \dfrac{{KQ}}{r}$
\[ \Rightarrow \dfrac{{E \cdot r}}{K} = Q\]
Put in the given values:
\[ \Rightarrow \dfrac{{900 \times 10}}{{9 \times {{10}^9}}} = Q\]
\[ \Rightarrow \dfrac{{100 \times 10}}{{{{10}^9}}} = Q\]
The magnitude of charge is:
\[ \Rightarrow {10^{ - 6}}C = Q\]
Final Answer:Option “4” is correct. Therefore, the magnitude of charge Q is \[{10^{ - 6}}C\].
Note:Here we have been asked about the magnitude of the charge. All the needed values are given to us. Apply the formula of electric field in relation with charge and distance. There has been a long battle between scientists whether light is particle or wave like, light is a form of EM radiation. On a similar basis electric field is considered to be wave like but according to quantum mechanics electric field can be quantized that means electric field just like light consists of discrete parcels, photons, etc.
Complete step by step Solution:
Find the magnitude of the charge Q:
$E = \dfrac{{KQ}}{r}$ ;
Here:
E = Electric Field
K = Constant
Q = Charge
r = Distance
We have been given all the values put in the above equation:
$E = \dfrac{{KQ}}{r}$
Write the above equation in terms of Q:
$E = \dfrac{{KQ}}{r}$
\[ \Rightarrow \dfrac{{E \cdot r}}{K} = Q\]
Put in the given values:
\[ \Rightarrow \dfrac{{900 \times 10}}{{9 \times {{10}^9}}} = Q\]
\[ \Rightarrow \dfrac{{100 \times 10}}{{{{10}^9}}} = Q\]
The magnitude of charge is:
\[ \Rightarrow {10^{ - 6}}C = Q\]
Final Answer:Option “4” is correct. Therefore, the magnitude of charge Q is \[{10^{ - 6}}C\].
Note:Here we have been asked about the magnitude of the charge. All the needed values are given to us. Apply the formula of electric field in relation with charge and distance. There has been a long battle between scientists whether light is particle or wave like, light is a form of EM radiation. On a similar basis electric field is considered to be wave like but according to quantum mechanics electric field can be quantized that means electric field just like light consists of discrete parcels, photons, etc.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths