Answer
Verified
468.6k+ views
Hint: According to Hund’s principle which states that, when electron starts filling up subshells, they do it such that the electrons of the same spin must solely occupy the orbitals within the subshell first and then the electrons of opposite spin will start filling up the remaining space in the orbitals.
Complete answer:
We know that the order of stability is defined as:
Fully-filled orbital $>$ half-filled orbital $>$ partially-filled orbital
We also know that s-orbital can accommodate a maximum of 2 electrons, p-orbital can accommodate a maximum of 6 electrons, d-orbital can accommodate a maximum of 10 electrons and f-orbital can accommodate a maximum of 14 electrons.
So, in $4{{s}^{1}}\text{ }3{{d}^{5}}$we see that both the s and p orbitals are half-filled. In case of chromium, the expected electronic configuration is $4{{s}^{2}}\text{ }3{{d}^{4}}$, yet actually we see that one electron from 4s gets transferred to 3d orbital making it $4{{s}^{1}}\text{ }3{{d}^{5}}$. This happens because $4{{s}^{1}}\text{ }3{{d}^{5}}$ being a more stable configuration.
Electron orbitals are most stable when fully-filled or half-filled, hence the most stable configuration of electrons for 3d subshells is either $3{{d}^{10}}$or $3{{d}^{5}}$. In the case of chromium, after $4{{s}^{2}}\text{ }3{{d}^{4}}$ configuration is attained, and electron from s-orbital gets transferred to 3d subshell because $3{{d}^{5}}$ is much more stable configuration than $3{{d}^{4}}$. This is why the configuration for chromium is $4{{s}^{1}}\text{ }3{{d}^{5}}$.
So, the correct answer is “Option A”.
Note: In the case of chromium, it is an exception of the Aufbau principle and the systematic rule of the principle does not comply with its electron configuration. The classical rule that there are orbitals with different energy levels state that
$1s\text{ }<\text{ }2s\text{ }<\text{ }2p\text{ }<\text{ }3s\text{ }<\text{ }3p\text{ }<\text{ }4s\text{ }<\text{ }3d\text{ }<\text{ }4p$ and so on. Same results are seen in $Cu$ where the expected configuration is $[Ar]4{{s}^{2}}3{{d}^{9}}$ but the observed configuration is $[Ar]4{{s}^{1}}3{{d}^{10}}$
Complete answer:
We know that the order of stability is defined as:
Fully-filled orbital $>$ half-filled orbital $>$ partially-filled orbital
We also know that s-orbital can accommodate a maximum of 2 electrons, p-orbital can accommodate a maximum of 6 electrons, d-orbital can accommodate a maximum of 10 electrons and f-orbital can accommodate a maximum of 14 electrons.
So, in $4{{s}^{1}}\text{ }3{{d}^{5}}$we see that both the s and p orbitals are half-filled. In case of chromium, the expected electronic configuration is $4{{s}^{2}}\text{ }3{{d}^{4}}$, yet actually we see that one electron from 4s gets transferred to 3d orbital making it $4{{s}^{1}}\text{ }3{{d}^{5}}$. This happens because $4{{s}^{1}}\text{ }3{{d}^{5}}$ being a more stable configuration.
Electron orbitals are most stable when fully-filled or half-filled, hence the most stable configuration of electrons for 3d subshells is either $3{{d}^{10}}$or $3{{d}^{5}}$. In the case of chromium, after $4{{s}^{2}}\text{ }3{{d}^{4}}$ configuration is attained, and electron from s-orbital gets transferred to 3d subshell because $3{{d}^{5}}$ is much more stable configuration than $3{{d}^{4}}$. This is why the configuration for chromium is $4{{s}^{1}}\text{ }3{{d}^{5}}$.
So, the correct answer is “Option A”.
Note: In the case of chromium, it is an exception of the Aufbau principle and the systematic rule of the principle does not comply with its electron configuration. The classical rule that there are orbitals with different energy levels state that
$1s\text{ }<\text{ }2s\text{ }<\text{ }2p\text{ }<\text{ }3s\text{ }<\text{ }3p\text{ }<\text{ }4s\text{ }<\text{ }3d\text{ }<\text{ }4p$ and so on. Same results are seen in $Cu$ where the expected configuration is $[Ar]4{{s}^{2}}3{{d}^{9}}$ but the observed configuration is $[Ar]4{{s}^{1}}3{{d}^{10}}$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE