
The equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$ represents a real circle, if
$
{\text{A}}{\text{. k < }}\sqrt 2 \\
{\text{B}}{\text{. k > }}\sqrt 2 \\
{\text{C}}{\text{.|k| < }}\dfrac{1}{{\sqrt 2 }} \\
{\text{D}}{\text{. 0 < |K| }} \leqslant {\text{ }}\dfrac{1}{{\sqrt 2 }} \\
$
Answer
608.7k+ views
Hint: To check if the equation represents a circle, we transform the given circle equation into the general form of a circle. We then use the condition that represents a real circle to verify.
Complete step-by-step answer:
We know, for an equation ${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$ to represent a real circle, the condition is $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$.
Given equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$
We divide the equation by k and compare it with the circle equation we get,
${{\text{x}}^2} + {{\text{y}}^2} - \dfrac{1}{{\text{k}}}{\text{x - }}\dfrac{1}{{\text{k}}}{\text{y + 1 = 0}}$
$ \Rightarrow {\text{g = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , f = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , c = 1}}$
To represent a circle, $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$ must hold true,
$
\Rightarrow \sqrt {\left( {{{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} + {{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} - 1} \right)} > 0 \\
\Rightarrow \sqrt {\dfrac{1}{{4{{\text{k}}^2}}} + \dfrac{1}{{4{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \sqrt {\dfrac{1}{{2{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \dfrac{1}{{2{{\text{k}}^2}}}{\text{ > 1}} \\
\Rightarrow {\text{1 > 2}}{{\text{k}}^2} \\
\Rightarrow \dfrac{1}{2} > {{\text{k}}^2} \\
\Rightarrow |{\text{k| < }}\dfrac{1}{{\sqrt 2 }} \\
$
Hence, for the equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$ represents a real circle if ${\text{|k| < }}\dfrac{1}{{\sqrt 2 }}$.
Option C is the right answer.
Note: In order to solve such types of questions the key is to have adequate knowledge of the general equation and conditions for a circle to represent a real circle. And then we modify the given circle into the form of a general equation of a circle and use the required condition, we have to be very careful while comparing the given equation with the general form of circle to obtain the values of g and f.
Complete step-by-step answer:
We know, for an equation ${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$ to represent a real circle, the condition is $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$.
Given equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$
We divide the equation by k and compare it with the circle equation we get,
${{\text{x}}^2} + {{\text{y}}^2} - \dfrac{1}{{\text{k}}}{\text{x - }}\dfrac{1}{{\text{k}}}{\text{y + 1 = 0}}$
$ \Rightarrow {\text{g = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , f = - }}\dfrac{1}{{2{\text{k}}}}{\text{ , c = 1}}$
To represent a circle, $\sqrt {\left( {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} \right)} > 0$ must hold true,
$
\Rightarrow \sqrt {\left( {{{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} + {{\left( { - \dfrac{1}{{2{\text{k}}}}} \right)}^2} - 1} \right)} > 0 \\
\Rightarrow \sqrt {\dfrac{1}{{4{{\text{k}}^2}}} + \dfrac{1}{{4{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \sqrt {\dfrac{1}{{2{{\text{k}}^2}}} - 1} {\text{ > 0}} \\
\Rightarrow \dfrac{1}{{2{{\text{k}}^2}}}{\text{ > 1}} \\
\Rightarrow {\text{1 > 2}}{{\text{k}}^2} \\
\Rightarrow \dfrac{1}{2} > {{\text{k}}^2} \\
\Rightarrow |{\text{k| < }}\dfrac{1}{{\sqrt 2 }} \\
$
Hence, for the equation ${\text{k}}\left( {{{\text{x}}^2} + {{\text{y}}^2}} \right) - {\text{x - y + k = 0}}$ represents a real circle if ${\text{|k| < }}\dfrac{1}{{\sqrt 2 }}$.
Option C is the right answer.
Note: In order to solve such types of questions the key is to have adequate knowledge of the general equation and conditions for a circle to represent a real circle. And then we modify the given circle into the form of a general equation of a circle and use the required condition, we have to be very careful while comparing the given equation with the general form of circle to obtain the values of g and f.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

