Answer
Verified
437.1k+ views
Hint : We have to find out the value of the RMS current and the RMS voltage from the given equations of the AC voltage and the AC current. We also have to find out the value of the phase difference between the AC voltage and the AC current. Then we need to put these values in the formula for the power in an AC circuit to get the final answer.
Formula used: The formula used to solve this question is given by
$ P = {V_{rms}}{I_{rms}}\cos \varphi $ , here $ P $ is the power dissipated in an AC circuit, $ {V_{rms}} $ is the root mean square value of the voltage, $ {I_{rms}} $ is the root mean square current, and $ \theta $ is the phase difference between the AC voltage and current.
Complete step by step answer
The equation of the A.C. voltage given is
$ E = 220\sin \left( {\omega t + \pi /6} \right) $
So the amplitude of the voltage is $ {E_0} = 220{\text{V}} $ .
Therefore the RMS value of the voltage becomes
$ {V_{rms}} = \dfrac{{{E_0}}}{{\sqrt 2 }} $
$ \Rightarrow {V_{rms}} = \dfrac{{220}}{{\sqrt 2 }}{\text{V}} $ …………...(1)
Also, the equation of the A.C. current given is
$ I = 10\sin \left( {\omega t - \pi /6} \right) $
So the amplitude of the current is $ {I_0} = 10{\text{A}} $ .
Therefore the RMS value of current is
$ {I_{rms}} = \dfrac{{{I_0}}}{{\sqrt 2 }} $
$ \Rightarrow {I_{rms}} = \dfrac{{10}}{{\sqrt 2 }}{\text{A}} $ …………...(2)
The phase of the voltage, from the equation given, is
$ {\varphi _1} = \omega t + \pi /6 $ …………...(3)
Also, the phase of the current is
$ {\varphi _2} = \omega t - \pi /6 $ …………...(4)
So the phase difference between the voltage and the current is
$ \varphi = {\varphi _1} - {\varphi _2} $
From (3) and (4)
$ \varphi = \omega t + \pi /6 - \left( {\omega t - \pi /6} \right) $
$ \Rightarrow \varphi = \pi /3 $ …………...(5)
Now, we know that the power dissipated in an AC circuit is given by
$ P = {V_{rms}}{I_{rms}}\cos \varphi $
Putting (1), (2) and (5) we get
$ P = \dfrac{{220}}{{\sqrt 2 }} \times \dfrac{{10}}{{\sqrt 2 }} \times \cos \left( {\pi /3} \right) $
On solving we finally get
$ P = 550{\text{W}} $
Thus, the power dissipated is equal to $ 550{\text{W}} $ .
Hence, the correct answer is option B.
Note
The RMS value of the voltage in the AC circuit is that value of the constant DC voltage which produces the same power as the DC voltage produces. So we calculate the RMS values for calculating the power. Also, do not forget the phase difference term which appears in the formula for the power.
Formula used: The formula used to solve this question is given by
$ P = {V_{rms}}{I_{rms}}\cos \varphi $ , here $ P $ is the power dissipated in an AC circuit, $ {V_{rms}} $ is the root mean square value of the voltage, $ {I_{rms}} $ is the root mean square current, and $ \theta $ is the phase difference between the AC voltage and current.
Complete step by step answer
The equation of the A.C. voltage given is
$ E = 220\sin \left( {\omega t + \pi /6} \right) $
So the amplitude of the voltage is $ {E_0} = 220{\text{V}} $ .
Therefore the RMS value of the voltage becomes
$ {V_{rms}} = \dfrac{{{E_0}}}{{\sqrt 2 }} $
$ \Rightarrow {V_{rms}} = \dfrac{{220}}{{\sqrt 2 }}{\text{V}} $ …………...(1)
Also, the equation of the A.C. current given is
$ I = 10\sin \left( {\omega t - \pi /6} \right) $
So the amplitude of the current is $ {I_0} = 10{\text{A}} $ .
Therefore the RMS value of current is
$ {I_{rms}} = \dfrac{{{I_0}}}{{\sqrt 2 }} $
$ \Rightarrow {I_{rms}} = \dfrac{{10}}{{\sqrt 2 }}{\text{A}} $ …………...(2)
The phase of the voltage, from the equation given, is
$ {\varphi _1} = \omega t + \pi /6 $ …………...(3)
Also, the phase of the current is
$ {\varphi _2} = \omega t - \pi /6 $ …………...(4)
So the phase difference between the voltage and the current is
$ \varphi = {\varphi _1} - {\varphi _2} $
From (3) and (4)
$ \varphi = \omega t + \pi /6 - \left( {\omega t - \pi /6} \right) $
$ \Rightarrow \varphi = \pi /3 $ …………...(5)
Now, we know that the power dissipated in an AC circuit is given by
$ P = {V_{rms}}{I_{rms}}\cos \varphi $
Putting (1), (2) and (5) we get
$ P = \dfrac{{220}}{{\sqrt 2 }} \times \dfrac{{10}}{{\sqrt 2 }} \times \cos \left( {\pi /3} \right) $
On solving we finally get
$ P = 550{\text{W}} $
Thus, the power dissipated is equal to $ 550{\text{W}} $ .
Hence, the correct answer is option B.
Note
The RMS value of the voltage in the AC circuit is that value of the constant DC voltage which produces the same power as the DC voltage produces. So we calculate the RMS values for calculating the power. Also, do not forget the phase difference term which appears in the formula for the power.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths